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ABSTRACT

This report presents a description of several related IBM-7090 Fortran
computer nrograms designed to provide a fast, accurate, and systematic
procedure for determining initial conditions to the differential equations of
motion from tracking data, lunar and interplanetary trajectories in n-body

space, and satellite ephemeris compilations.

The theory and analytical formulation for each program is given in detail.
Instruction in program usage is given with individual check problems provided

to facilitate operational proficiency.

To verify the formulations the following examples were used:

-

1. Initial Condition Determinations - (Data for the asteroid lL.euschnerina

1935 used in form of a check problem).
2. "Trajectory Computation - Lunik III Data (included in interim report).

3. Ephemeris Computation - {Data for the asteroids Pallas and Vesta

used in form of a check problem).

In addition to the above work, this report also contains a study of Lunar

Trajectories. The types of trajectories considered are:

1. Error Analysis of Hyperbolic Impact Trajectories.
2. Lifetime of an Artificial Lunar Satellite.

3. Lunar Circumnavigation and Earth Return.
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I. INTRODUCTION

This report, which represents the final report on contract AF 19(604)-5863,
is intended to cover only that work performed between July 1960 and June 1961.
All work prior to this period has been given in an interim report. ¥ All re-
marks made in the interim report concerning restrictions and assumptions
pertaining to uncertainties in the physical constants employed and the resulting

effects on the accuracy of the computations are applicable to this report.

A computer program designed to compute the trajectories of a body in
the combined gravitational field of the Earth, Sun, and Moon, using true
ephemerides of the positions of these bodies, has been operational for some
time. It is described in the interim report.* This program has been extended
to include the major planets and is known as the "ﬁ—body interplanctary tra-
jectory program' (n = 9). The formulation of the equations of motion and the
numerical integrationtechniques used are discussed in detail in the interim

report. The main features and operational procedures are, however, included

in Appendix A of this report.

Such a program is of great value in the computation of theoretical tra.-
jectories and orbits in which assumed sets of initial conditions are employed.
However, employment ot tracking data obtained from various radar and/or
optical equipments located at a specific geographical location on the earth will
require a great deal of édditional hand computation before a "'suitable set of
initial conditions may be derived." This additional computation may assume

several forms of which orbit determination, coordina.e transformations,

* AFCRL - TN - 60 - 1132 Scientific Report No. 1 (AF 19(604)-5863 Lunar
Trajectory Studies and An Application to Lunik III Trajectory Prediction -
Petty, A. F., Jurkevick, I.; July 1960.
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equinox to equinox reductions, and compilation of ephemeris tracking data

are prominent.

These hand computations a.re tedious and time consuming. If a sizable
number are required the impracticality of manual computation becomes in-
creasingly evident. To circumvent this problem, computer subroutines have
been developed. These routines, used in conjunction with the ''n-body inter-
planetary trajectory program!'', provide a high degree of flexibility in solving

diverse orbital and trajectory problems.

An objective of this report is to present each program's analytical
development z2.:d to illustrate its nse in augmenting the inherent capability of
the ''n-bedy interplanetary trajectory program.' Machine listings, together
with programming instructions, are given for those with more than.cursory

interest. (See Appendix B)

V.oritication of the accuracy of these computer programs and routines was
established by recomputing the orbits and trajectories of well known astronomi-
cal objects (asteroids). In no case were theoretical orbits or trajectories em-

ployed to test the programs.

In particular, extensive use has been made of thé data for the asteroid
Leuschnerina 1935 in developing the initial condition determination programs,
both for the two position vector case and for the three angular position case.
Also a recomputation of the orbits of the astercids Pallas and Vesta were used ' =
to verify the ephemeris prediction accuracy of the ''n-body interplanetary
trajectory program.' Residuals obtained by comparing computed values
against tabular values as given by the American Ephemeris and Nautical

Almanac is indicative of the accuracy achievable.



The computer program development mentioned above represents one of
the two major aspects of this contract. The other is the employment of these
programs in the study of several classes of Lunar Trajectories. The first
of these, a circumlunar flight which passes at a distance of 7, 000 km from
the Moon (Lunik II1) was described in detail in the interim report. Here,
tracking data released through the Russian news agency TASS was employed
to obtain a set of initial conditions to the . ferential equations of motion. A
second circumlunar flight initiating from the Atlantic Missile Range (AMR)
was also studied in some detail and the results are included in this report.
Such constraints as range safety limits, launch time, and booster limitations
were considered as well as the usual two point boundary value constraints,

The effect of some ¢f these constraints is indicated. ~7

A major effort was given to the determination of initial condition error
sensitivities for "Hyperbolic Lunar Impact Trajectories.' Nominal impact
trajectories were established on three separate dates and error tubes ob-
tained. No ati:empt was made to artificially constrain the nominal trajectory
to a normal irnpact. In all cases the center of the apparent lunar disc was

taken as the nominal trajectories impact location.

The final study involving the life time of a lunar satellite over extended
period of time (25 days) indicates the perturbative effects of the earth and
sun on the orbital elements. The instantaneous perturbations of the elements
as a function of time are presented for the first ten (10) days of the orbit.
An interesting development arising from this study is the fact that for identical
initial conditions the life time of the satellite in an Earth, Moon, Sun field
exceeds 25 days (we did not ascertain the limit) while in an Earth-Moon field,

the vehicle impacts the Moon after some 9 days.

This report contains the results of all of the above mentioned studies with
the exception of the Lunik III trajectory. Also, a few additional special cases

are included in Section VIII of this reporttoillustrate certain statements in the text.

-3.



II. INITIAL CONDITION DETERMINATIONS (GENERAIL CONSIDERATIONS)

GENERAL COMMENTS

In the development of the following computer programs two branches of
Astronomy have been used. These are spherical Astronomy and Celestial
Mechanics. The former is concerned with the details of establishing precise
and practical coordinate systems from which observational or tracking data
can Lbe readily employed in the theoretical equations developed in the latter.

An attempt has been made in this report to follow the standard developments
found in the Astronomical texts. Familiarity with these standard conventious
is assumed. However, for each routine or program, all parameters are de-
fined in terms of the units used and the direction in which they are measured.
Appropriate referencesare given to the Astronomical literature throughout

the discussions.

A. INTRODUCTION

Once a set of initial conditions becomes known, the differential equations
of motion on the n-body problem may be numerically integrated. Such a set
comprises the vehicle's position and velocity vector at an instant of time
relative to a particular coordinate system. It may be determined at the end

of thrust or at subsequent times.

This section's objective is to indicate methods for determining this set
of initial conditions from observational or tracking data. Concern here is
with single tracking stations whose tracking equipment cannot instantaneously
measure or provide vehicle position and velocity vector. Tracking situations

considered are:

(a) Vehicle position vector is measured or known at two instances of

tirne.




(b) Vehicle angular positior is measured or known at three instances of

time. (no distance information available)

(c) Distance to tne vehicle is measured or known at six instances of

time. (no angular information is available)

It is to be noted that in all these tracking situations, six pieces of in-
formation are obtained. This is a necessary and sufficient condition to

establish the required initial conditions.

Situation (a) corresponds to a radar recording the vehicle's range and
angular coordinates. Situation (b) corresponds to an optical or infrared
telescope recording of only the angular positions of the vehicle. Situation

{c) corresponds to a radar recording of only the range to the vehicle.

In all cases it has been assumed that the time of each measurement is
accurately known as well as the geographical positicn of the tracking station

‘on the Earth's surface.

B. DETERMINATION OF THE INITIAL CONDITIONS FROM TWO
POSITION VECTORS ‘

Following Laplace, the position vector at any time t may be expressed

in terms of the position and velocity vector at some time t by
o

—-— - -
r(t) = fro+ g Tr0 (13
- - P -~
where r = r{t) , r = r{t)
(o] (o] (o]
2 2
and f=1- ;-;rrz+ %#073 4 2-”4-(3(» -2H- 150 )74- -’-‘8;'(3w-2p-7a)75+...

1 3 4 2. 5
T- s uT = T+ e (9w-8u-450 )74 ...
6 M1 T g e 120 g -

[+ 1]
"



MG o «To

— C = ——— , WE ——  T= (t-1t)
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- - -
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and where G is the gravitational constant and M is the mass of the Earth.

Note that f and g are scalar functions of the position and velocity at time
to and the time interval between measurements 7. If the coadiiions at to are

known, the entire trajectory is specified by equation (1).

The three scalar equations associated with (1) are:
X = £X +gX
o ® o

Y

H

iy +gY.' (2)
o o

Z

on+gZo

WNow if observations are made at time t and to, sothat X, Y, Z, and

X , Y , 2 can be computed, the velocity components }.( , Y, 2.'. may be
o o o . o o o

expressed in terms of the scalar function f and g as

x = L ix-tx)
(o] g o]
. 1
Y= — (Y-£Y) | (3)
g
. ]
Z = —(z2-£2Z)
o] g (o]

Since f and g are themselves functions of the velocity .;o’ the velocity
components are given only implicitlyby(3). To determine the velocity com-
ponents, f and g are initially approximated by the first and second teisms in
the series which defines them. Specifically, f and g are initially approximated

1 2 1
by I - = uT and 7- s p7‘3 respectively,



Equation (3) is then solved, giving first approximations to ).{O, ‘:’?_ é(\.
These values are used to recompute the f and g series, which in turn ¢
used in (3) to recompute better approximations to ;(o’ W}O, éo. This pro-
cedure is repeated until sﬁccessive iterations result in velocity components

that differ by less than some prescribed tolerance.

C. DETERMINATION OF THE INITIAL CONDITIONS FROM THREE
ANGULAR POSITIONS ’

(Distance Information Not Avaiiable)

Again followi>ng Laplace, but employing the entire development, com-
putation of the initial conditions from angular observations alone is possible.
Generally, the Laplacian method consist of. writing two equations in two un-
knowns. One, the geometrical eéuation. can be expressed as

2 2 o= A
r o= £ +R2-2(5-R).u (4)

and the other, the dyrnamical equation, as

[=.5.%]

- ..b g N .; -
PIPxPeP = {PxP*R| + |[PxP*R /r3 (5)

- .
in which P is the radius vector between the observing station and vehicle, and
- ,

r, the geocentric distance of the object at time t. These are the unknown

quantities. The quantity l_i. is the geocentric radius vector of the observing
station and is assumed to be known. The quantity 5 is a unit vector directed
alc :g the line from the observing station to the vehicle. Its components are
Ehe dirqstion cosines -¢ the observations and together with the components of

-
Po and Po' enable evaluation of the triple scalar products in the dynamical

equations.

For computational facility various schemes have been advocated. The
methods differ only in the quantities taken as the independent variables. Thus,

o
the straight or original I.aplacian methoddirectly uses the magnitudes of p and ?

-7~



-—
Leuschner's modification uses #cos § and | I as the variables, and Stumpff
- -
employes I r I and cne of the components of r as the principal variables.
The quantity P cos$ is known as the curtate distance, and § represents the

declination.

We have chosen to program Stumpff's method. This method derives its
principal advantage from the use of the ratios of the direction cosines and the
reduction of all the determinants from the third to second order. In the original
Laplacian formulation, all the formulas were expressed in terms of tkird
order determinants which correspondtothe triple scalar product. The follow-
ing formulation of Stuimpfi’s Method has been employed. (See Herget-

"Computation of Orbits'')

Let
Uz—z—i:tana. V:—Z-i:secatanS,P:Y-UX,
x+X x+ X
Q = Z2-VX (6) .

where the small x, y, z are components of the vehicle and the large X, Y, Z

are the components of the tracking site both referred to the same geocentric
equatorial coordinate system. The latter are known quantities since we assume
the geographic coordinates of the tracking station on the Earth's surface are
known. The quantities a(the right ascension) and § (the declination) are the
measured observables. Three sets % 81, a282, a3 83 of these cbhservables

are recorded and are the fundamental six pieces of information required for

the trajectory determination.

Cross multiplying the equations for U and V, introducing P and Q, and

differentiating twice, obtains

y = Ux-P z = Vx - Q
;:Ux+U).<-15 .zz\./x-V):-é (7)
y=Ux+2Ux+Ux-.P. },'zvx_z\'/;<+v;<'-5

-8-




oo
-

== r
Substituting the dynamical conditions for each component of r - —

&
into the two bottom equations of (7) obtains

LG - LE.E
2 2 2r
(8)
L Ve Vx o= o84 82
2 2 213
Let
D = —1- UV——IVU
2 2
obtaining
1 °°° oo o PR . 3
Dx=_—(PV-QUY+(PV -QU)/ 2r
2 (9)
. 1 ees oo e oo .® X 3
Dx = — ( -PV)+(UQ - VP)/4r
4

3 2 2 2 2 2.2 2
r =x +v +2z =(1+U +V)X-2(UP+VQ)X+(PZ+Q)

In equation (9) the only unknowns are x, ;c, and r which can be obtained
by a simple iteration between the equations. Thae approximate numerical
values of the coefficients at time to, the time of the middle observation, may
be obtained from the observations by writing a Taylor's series for the first

and third observations as

] 1 ne 2
W = W +WwW -— ¥
1 o OT1+2 oI, +...
L ] 1 .o 2 (10)
W, = W + W T +— W T + ...
3 o o 3 2 o 3

which may be written in the form



W o+ W T =(W, 1)
c 1

o

(W, - W )T,

iy
2

W o+ Lw T, =(w, 3
5 3

(W3 - wo) T3 o o

and then
Wo (T3-T}.) ='1"3 (W,l)-Tl(W,3)
Lwo(r.-T

2 o '3

Pe= (W, 3) - (w, 1)

where W denotes U, V, P or Q and Tl =-(t1 - to), T3 = (t3 - to). Thus,
all coefficients can be determined from the observations, and equations in
(9) solved. With the solutions from (9), (7) may be employed to obtain the
other componénts of the vehicle's position and velocity vectors at time to.

Initial conditions are thus obtained.

The value of D is the controlling factor of the entire solution. This
corresponds to tie coefficient of p in the left-hand member of (5). If ex-
tremely srr;all, it indicates the time interval between measurements is too
small to make the solution very determinate. Alsc, it is easy to see that
aifﬁculties will arise in ernploying this method when observations exist in
the neighborhood of '6h or 18h right ascension, due to the large, or even
meaningless, values obtained for the derivatives of U. Methods for circum-
venting this problem are currently being considered e. g., xotating the coordi-
nate system by a fixed amount, though this will probably only shift the problem

to the V's for observations near the celestial pole.
Employing more than three observations will aid in alleviating this

problem. This, however, is an entirely different computation involving

differential correction procedures and will not be discussed here.

~-10-



D. DETERMINATION OF INITIAL CONDITIONS FROM SIX RADAR
RANGE MEASUREMENTS

(Angular Information not available)

Initially, it appears that the initial conditions could be obtained from six
radar measurements employing a line of ‘reascning similar to that used for

two range vectors.

The observing site, the vehicle, and the dynamical center are connected
by
- 2 o
p=r - R (11)

as shown in the following sketch

Site* ' '=n Vehicle

From the law of cosines

r =R + p + 2R * p .. (12)

o .f N D .
r o F nr0+ g T, (13}
From (13) it follews directly that"
2 2 -~ 2,2 .2 2 2
"n _fn r02+2fngnro ro+gn To _(fn * angno +gn @) o (14)

where 0and « are defined as for the case of two range vectors. The same

holds for the f and g series.
n n

-11-



S -
It is further convenient to express 2 Pt Rr as
4

‘R -2RZ (15)

n n n

- - - —
2(r ~-R)*(R) = 2r
n n n

Employing now (4) and (5), in (2) obtains

2 2 2 2 2
C = -R =(f +21¢ + Yr -2f X x -2f Y -2f Z 2
n 'On n (n n®n? gnw' o n n o n n’o n no
(16)
-2g X x -2 Yy -2g 2 2
En o En'nYo “Bn“n%o
In the above, X , Y , Z ares the rectangular components of the vector
n n n
a
R at the corresponding time T at which the rang P is measured.
n L .
Using obvious definitions, it is convenient to write equations (16) as
follows:
a 2+ + + z o+ : +ta y +ta _z C (17)
r a a a a X - =
nl "o n2 Yo n3Yo T “nd’o n5 o n6’ o n7 o n
n=1,2,3, 6
A few remarks are pertinent with respect to this set. The unknown
guantities arex , y , z _, X, ;r , z , and r although the latter is given
- o ‘o0 o o ‘o o o
Z 2 2 2 _
by T =X + Yo + z - The coefficients a .are not really known, although,

an approximation to these is available by taking first terms in the fand g

series.

It is apparent that if rO is included among the unknowns seven measure-
ments instead of six are needed. On the other hand, a better approximation
of fn and g can be obtained by taking two terms in these series. This is,

however, equivalent to estimating r . If this is the adopted procedure, only
o

six measurements are required.

-12-




The computational scheme is then:

The input data are the six values of measured range; an estimate of

r ; X, Y, Z ; sidereal time; six values of time at which the measurements

are taken; and the rotation rate of the Earth.

From the above the coefficients ani are estimated and set (17) is solved.

This results in guantities

T ?_)1/2
To = Yo TV, T2

2

e 2 2 2 N
v = (x +y + )
o o o

From these, better estimate of 1, 0 and w are obtained entering the {
n
and g, series. Using these, the whole procedure is repeated until the

desired precision is obtained.

= 13=



III. INITIAL CONDITION DETERMINATIONS (COMPUTER ROUTINES)

Section II presented the motivation behind the need for tracking sub-
routines. Sumumarizing, the purpose of tracking subroutines is to yield
initial conditions required to initiate numerical integration of the differential

equations of the n-bedy problem.

Basic ideas and computational formulas involved in the three chosen
routines were outlined in Section II. In the present section, detailed step-by-
step procedures, as programmed for the computer are given. In all three
cases, however, discussion is more extensive than that prepared for computer
use, reflecting the programs evclution. The entire devélopment will be
included since many procedures, though not employed in final computational
programs, can be of interest to the user willing to effect personal modifica-

tions.

It should be noted that one of the three tracking schemes considered in
this report proves unsuitable for numerical co: :putations. Reasons for

failure of the routine employing six vanges, measured from a single trac] .ng

staticn, will be discussed later.

The first tracking scheme to be described employs the vehicle's three

measured angular positions.

A. DETERMINATION OF THE. INITIAL CONDITIONS FROM THREE
ANGULAR POSITIONS
This tracking method's purpose is to compute the components of the
vehicle's position and velocity at some time t from measurements of its
right ascension and declination at three instants of time. It is assumed that

if the measured quantities are azimuth and elevation, they are transformed

-14-



into the corresponding right ascension and declination by methods outlined
in Section IV. It is further assumed that these methods are employed to

prepare all measured data and auxiliary quantities for computations.

It must be emphasized that ail tracking methods described in this report
vield preliminary values of initial conditions. The significance is that a
minimum of data is used to effect the computaticn. Consequently, no
provisions are made to accept redundant data to obta&n a better estimate of .
the desired quantities. Standard differential corvection procedures can be
used, eg. maximum likelihood estimation, or the conventional least squares
method once the initial preliminary trajectory is obtained. Their inclusion

in this report is omitted as they were not considered a part of the study.

Initial estimates are based on a two body problem where the vehicle
moves in the immediate neighborhood of some dominant mass. The latter

will, in most cases, be the Earth.

It can be seen from Figure 1 that an astronomer usually considers the
distances Observer —» Vehicle and Observer —» Center of Force positive.
For purposes of this report it was found more convenient to measure
distance Center of Force =»Observer as positive, Distance™T is in both cases

measured positively from the center of the force.

—
The new definition of the sign of R will result in expressions slightly
different irom those in the previous section. For this reason, the development

of Stumpff's method is repeated. The choice of this particular method was

adiscussed in Section II.

1. Determination of the Initial Conditions from Three Angular Positions

From Figure lb, it can be seen that the observer's position,
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Figure 1.
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(a) Astronomical convention
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Relation Between the Observer,

~1=

Vehicie and Center of Force




the vehicle's geccentric position, and position of the center of force are

related by

or

In appropriate rectangular components this is:

n
"

pcos § cosa =x -X

p cos $sing =y - Y

3
n

{ = psind =z -2

Employing the latter expressions define

— y-X
U= TANa =
x - X
z - 2
V= SEC a TANS = —m——0—
x - X

These equations yield in an obvious manner

Ux - UX

"
D
'

=<

Vx - VX =2z - Z

Y-UX=y-Ux=P
Z-VX=1z2z-Vx=Q

-17-
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The last equations can be rewritten as

P+ Ux

<
I

(6)
Q+ Vx

N
"

In the above, it must be noted, o and & are measured in the
coordinate system fixed at the observer's site. The components of R can
always be found as soon as the location of the tracking station and the time
of measurement are known. Both o, § and X, Y, Z must be referred to the
same coordinate system. It is recommended that some star.xdard coordinate

system be adopted, e.g., that referenced to the mean equinox of 1950. 0.

Differentiating equations (6) obtains

Ux+ Ux+ P

<
"
Ne
i
<
b
+
<
e
4
o

= Ux+ 20%+ U¥+ B 2= Vx + 2V + V¥ + O

Ncte the equations of motion of the vehicle in the gravitational field of the

doumninant mass are given by

In these equations, units are chosen in such a way that the constaait k

appearing normally in (8) is equal to unity.

Employing equations (8) in (7) it follows that

—I—Ux+fl>'<,=-—l—i5- i
2 2 213
(9)
—1—"x+\./)'c=-_1_.d- 2
2 2 2r3
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Solution of system (9) for x and X yields

LB E ¢
2 2r3
—-Loo— Q .o' —/.—l__“\‘[— l "U)—<PV—QU
2 2r3 \ 2 2 213
X = 3
1 [N ] ] 1 oe o 1 .
—_U 6) Veoe— Vv
2 2 2
(10)
Define the following quantities
1 *e [ l e L]
D=Z —UV - — T
2 2
A —_ l Op' L 1 6 [
= \z 7V =" (0
B = - (P V-Q I'J)
By virtue of cquation (11), x can be rewritten as
A B i
X = +
D 2D r3
Similarly
1 oo oo
2y LB P3_
2 2 2r
Dx = 1 o T o)
—_V . - -
5 5 53 (12)
{1 )
. 1 oo
(X2 [X) [ X] [X) 5 > P
bt (L Ly Lp Ly 200
\ 2 2 2 2 2r3
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Defining quantities

— <1 te ¢ 1..56)
G= -| — - — /
4 4
/ 1 (X 1 (X
HE—(-——QU-—P )
Z 2

% can be written as

Xe
n
Q
+

Finally r ¢an be expressed in terms of x using equations (4).

Thus
2 -2 2 2 2 2
r =x +vy +z =x + {(P+ Ux) +(Q+Vx)2
' \ ' (13)
2 2 2
= (1+-U + VZ) x + 2 (PU + QV)x+—(P2+-Q2>
Defining
C=1+U2+V2
E =2 {PU + QV)
F-= P2+Q2

r can be expressed as

2 2
r =Cx + Ex+ F
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Equations (10), (12), and (13) represent a system of simultaneous
equations in x, X, and r. Now, x and r are solved by (10) and (12), emploving any
convenient numerical procedure. Once r is available, x follows from (12).

Cther components of the position and velocity follow from equations (6) and (7).

The development of Stumpff's method will be concluded by giving,
without proof, two infinite 'series frequently occuring in orbit determinations

of the type considered in this report.

These are the f and g series of the Laplacian method of orbit
computation. The simple idea behind these series i8 as follows. Suppose that
= . 3 . c
position T and velccity ?o of the vehicle are known at some time t - The

motion of the vehicle in the ne{ghborhood of this point can then be expressed

as
& - - 2 23 0
T=T + 17T + T/2!'T e (14)
o o o
and
-
(Y T
T = -
1_3

Successive differentiation of the last equation permits elimination of higher
order derivatives in (14). It can be shown that as a result of this procedure
equation (14) assumes the following form

- -
r T

(15)

o

=& l=




where

1 2 1 3 ;1(30.)-2;; -150’2> 4
fole— p7T 4 — poT + T
2 2 24
2) /
- - 2 2
#cr(3w 2u - 70 75+ _#_ \630w 420 -945 0 )a
8 720
2 6
-<22#2-66#w + 45 w )-l T +.... (16)
d
N
1 3 P 4 p(‘)w -8 -45 o ) 5
=7 - — T ot T + T
g7 6 # 120
u o (60.) ~5u -l4o ) 6
T+
24 (17)
T .7 1 T .T T .7
. o o i} o . _0O o _ _ o )
5 3 2 2 '
r r r b

6 . : '
Terms higher than 7 become too compiicated for practical purposes. Note that

T=t =t is expressed in the appropriate units of time.
o

Use of f and g series is subject to the usual limitations of
convergence. If any doubt exists concerning the latter, it is better to use the
closed form of the series in question. The appropriate expressions can be

found in Reference (1) pp. 48 or 75.

It is unlikely that in problems considered in this report the need for

closed forms will ever appear.



The procedure written for the computer is based on the above

development and it is summarized in a step by step form below:

Measured Data and Site Coordinates

Right Rectangular Compaonents of Site
Time and Date| Ascension |Declination Y Z
31 @) .3 ] Y 2y
t a ) Y Z
o o o o o o
ts @3 e 3 ¥, Z4

In the above, units of distance and time should be taken in

accordance with the rules outlined in Section IV. The procedures of this

chapter also determine the site coordinates.

2. Computer Program

Th'e computation then proceeds as follows:

I. Compute

TAN a. = U,
i i

SEC a.

TAN Si

SEC a. TAN 6, = V,
1 1 1
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I, Compute

'rl = k (tl - to)
73 = k (t3 - to)
\

3T 71
The value of k is the reciprocal of the time unit employed for

the particular problem.

In any modification of the Laplacian method of preliminary orbit
determination, it is desirable that intervals tl -t and t-3 - to be nearly

equal. It can be shown that, under these conditions, errors in numerical

derivatives and accelerations of U, P, V, Q are of the second order.

III. Compute the following quantities

U, - U, U, - U_
(g, 1) = ——— (U, 3) = 2
1 73
V., -V V., -V
(v, 1) = _E .5 (V, 3) = 2o
"1 73
Pl - Po P3 - Po
(P, 1) 3 ———m——— (P, 3) =
T ' T3
Ql --QQ Q3 -Q
Q1= ——— Q, 3z ——— 2
'rl 7'3

-24-

w




1V. Compute

. T (U: 1) s U (U: 3) B T (P, 1) - T (P, 3)
b - 3 1 P = 3 1
o o
3T T T3~ T
T (V: 1) - T (V: 3) T (Q: 1) - T (Q: 3)
v o= 3 1 L - 3 1
o o
37 T 3771
V. Coinpute quantities
l i _ (U) 3) = (U: 1) 1 .F; - (P» 3) = (P, 1)
o o o .
2 37 ) 2 37 7
l .\: - (V) 3) = (V: 1) , 1 a - (Q: 3) - (Q: 1)
2 °© T - T 2 o r

V1. Compute the quantities

1 .o . 1-. .
(a) D=—é— OVO-—Z— OUO (e)
= LB v 189 f
(b)A_-<—2_ oo---; o o (£)
()B—-/oﬁ-ou (g)
¢ - .0 o o o g
2 2
(d) C=1+U_+ VS (h)

-25-
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2 2 2 2 °
1 .o [
o (Lab,- L)
2 2 o O/



VII. Form the following equations

B 1
{a) x=£‘—+——-—.

D 2D r3

{b) rZ=Cx2+Ex+ F

G H 1
= + ']

D 2D T

A

(c)

W

VIII. Solve (a) and (b) of step VII simultaneously for x and r.

Designate desired solutions by X and T

For the case of vehicles moving in the Earth's vicinity
T >1 in units of the Earth equatorial radius. Generally, equations (a) and (b)
may result in three values of r. One is the desired one, the second represents

the position of the center of force, and the third is entirely spurious.

_IX. Using the value of T, obtained in step VIII compute 5(0 from

equation VII. (c)

H 1
X, = + >
2D T
o
X. Compute
= P
Yo 0+ono
Yy =U x +U %X +P
o o o o o o
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N
i

Q +V x
o o o

Ne
n

VvV x +V x +0Q
o o o o o

If the intervals of time between measurements are equal, the

computed values of

refer to the time of middle measurement.

These values, expressed in suitable units, are then employed
as the initial conditions in the n-body Trajectory Program. If redundant daca
are available, preliminary values are used to initiate a differential

correction program,

The following computation has not been programmed. It is
included so that, if desired, it can be employed as a check on the qualit;r of

computation, .

For i{imes tl and t3 compute values of f and g. In employing

these values
x,=f . x +g. %
1 1l 0o 170

Yl=f1yo+glyo

N
n

1 flzo+glzo
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and

Since positions of the observer at times t1 and t3 are known, it is possible to

compute

*) - Xy
v1 - ¥
::1 - Z1
x3_3<3
Y3 = ¥q
z3-Z3

Using these compute ap 51 and ays 53 from
Y- ¥ 282
TAN a1= : SEC alTAN 51=
x1 - X1 x1 - X1

and similar expressions at t

n
(54
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The computed values of a, 81, aq, 8 , should be in reasonable

3

agreement with the observed ones. Failure to achieve agreement may be due

to:
(a) Error in computation
(b) Too long or too short a time interval
{(c) Original observations too inaccurate
etc.

This concludes the discussion of the first tracking method.

B, DETERMINATION OF INITIAL CONDITIONS FROM TWO POSITION
VECTORS -
This section describes a procedure for determining velocity components
of vehicle movement in the Earth's gravitational field from measurements of

the distance and twoc associated angles at two different times.

In analysis, the technique offers a fast and accurate computer solution to

establishing the complete initial conditions at some time t.

-~
Laplace's method shows that position r, at any time t, of an object
traveling in a Keplerian orbit, can be expressed as a function of the position

-~ - .
T and velocity T, at some time t , according to
o

S S B
r=fr +gr

o o (A)

where f and g are scalar functions of the position and velocity at time t and
o

. § . A A . 13 3
the time interval t-to. Since r and r o 2Te specified if two range and two

-29-



angular coordinates are observed at time t and to, the velocity ?o may be
determined from (A), if f and g are known. Fortunately, for time intervals
between observations of practical interest, functions f and g are represented -
by rapidly converging infinite series whose first dominant terms are functions
of position ?o and the time interval t-t but not of the velocity ;}o' Thus,

good first approximations of f and g are known, though the initial velocity is

unknown.

The method described in this section is based on the above facts. The
initial velocity ;r: is evaluated from Equation (A) after f and g have been
approximated. This first approximation in velocity is used to recompute {
and g, giving a better estimate of velocity. The procedure is repeated until
desired precision is obtained. It is apparent the computation is iterative
in which good initial estimates of the initial velocity components are not ¥
required. In fact, because of the very nature of the f and g series, the first

approximations are quite satisfactory.

S

1. Determination of Equatorial Position Coordinates From Range,
Azimuth and Elevation

Figure 2 shows the position of the observed object in the coordinate
. AN N
system fixed at the radar site. Let £, 7, { be the unit vectors along the
respective axes, A-azimuth and E-elevation. Then the vector 7 from the

observing station to the object is given by
= A . A A
P = pPlcos Ecos Al +cos EsinA 7 + sin E ¢ (18)

Figure 3 shows that the position vector of the observing station is

given by

—
A A A
R =R [cos ¢ cos @ ix+ cos ¢'sin@® iy+ sin ¢' iz] (19)
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A A A
wherei , i , 1 are the unit vectors in the inertial geocentric cartesian
X Y z

coordinate system and ¢ and @ are the geocentric latitude and local
sideral time (expressed in angular measure) of the site, respectively. The
latter quantitites are computed according to the rules given in the chapter on

conversion routines,

Rotation of the x, y, z coordinate system through an angle @ about

the z axis, and through an angle ¢' about the y' axis, results inthe following

expression, ) *
A ) A
g cos ¢ O sin ¢ cos ® sin @ o) ix
A A
no|= O 1 O -sin 8 cos © O i
Yy
A A
L -sin ¢ O cos ¢' O O 1 \i /
Z
Let

cos¢t cos@ = L

cos ¢ sin® = M

sind = N

then the unit vectors are related by:

i}

A A A A
£ Li + Mi + Ni
x Yy z

(20)
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A A M A 2 2N
T - NL Y A _1+‘/L + M“T (20
2 2 e z .2 y z
‘/L + M L +M

Using (20) in (18):

> M NL
p=p |—(LsinE- .cosEsinA-—cosEcosA)i‘\
L +M a L + M
) L ; A
+ (Msm E + cos E sin A - cos E cos A)1y

NM
- '/ 2 ‘/ 2 .2
T +M2 L +M
. 2 2 A
+ N sin E + L + M cos Ecos A 1Z

From Figure lb.

- - — A A )
r

= P+R=xix+yiy+ z'i3

Thus, previous expressicns yield

L
x = RL + P(LsinE-——LcosEsinA———L—cosEcosA)
VLZ + M2 V_LZ + M2
. ‘ M
y=RM+ # (MsinE+——-L—————cosEsmA——-——-I-:]——cosEcosA)
‘/I_,2+M2 VL2+M2
z =

|/ 2 2
RN+ p (NsinE+ L +M cos E cos A)

To obtain the geocentric rectangular coordinates of the object referred

to the equinox of date, range, azimuth, elevation, geocentric site latitude and

sidereal time are needed.
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If the computation is to proceed with respect to some other equinox, x,
y, and z must be transformed according to the rules given elsewhere in this
report.

This need, however, will be ignored for the present.

"2. Determination of the Initial Conditions from Range, Azimuth and
Elevation Measurements
Since motions in the Earth's immediate vicinity, over relatively
short spans of time, are being considered, it is permissible to consider the
object’s path as a Keplerian Orbit. The latter is completely specified by six
independent quantities, e:g. , six orbital elements, six angular sightings of

the position, three position and three velocity components at any time, etc,

In this problem, the tracking instrument supplies the range and
angular data. Thus, two such observations at different times are sufficient
to specify the orbit. However, since the n-body Trajectory Program requires
position and velocity components as inputs, the above measurements must

be made to yield velocity components at some time tas well.

From the previous section, two observations yield x, y, z at two

difierent times.

roudn
Following Laplace, the position vector r at time t is expressed as:

S f_; i N
r =
(t) T +g T (21)

Development of this result was discussed in Scientific Report No. 1,

and is found in references (1) and (2).
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Inexpression{21): ;o =T (to) 3 ;o =T <to>

2
1 2 H 3 ,u(3w-2|~l-15 0’2) -4 KO (3W.2pk-T70 55
=1l — 4 7 + HoT + -
2 24 8
m 2 2 2 2 76
+ (630 w-420L -945 0 ) o - (22 p -66 pw +45 w ) + oo
720 .
(22)
2 2
3 - -45 o 5 Lo(bw 5u -140) ¢
::—-—1-#7'-}- b 7’4+ #(90) 8/1 5 ) T o 'l ( )'r + ...
6 4 120 24
(23)
where
1 T .T T .T
o o w = o o)
/J' = ’ %4 = y -
r3 rZ r2
o o o

and

7=k (t-to)

;
Depending on the object, it is convenient to expressidistances in astronomical

units and time in 58. 13244 days, or distance in Earth radii and time in units of

806. 9275 seconds.

The procedure used was outlined in Section II and repetition is

unnecessary.
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3. Computer Program

A step-by-step outline of the computer solution is given below. Note
that, in the final computer program, azimuth and elevation are not directly
used but are first transformead to right ascension and declination referred

to a suitable equinox.

1. Input data:

a s 5, s 51, are obtained from A.O Eo, Al’ El
II. Compute
xo=Xo+ Po cos bo cos ao xl--_X1+ Plcos 51, cos @
Vo= Y, * pocos SOsinao Yy, =Y, + £ cosd, sinal
.zo=Zo+ po sin bo zl=Zl+ Pl sin 51

III. Compute

L2 1/2
o o] yO+ZO

1
/J-'_"

3

T

o]
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IV. Compute

V. Compute

VI. Compute

. LN . . .
r .r =x +y +z
(e} (e} (e} [e}
- - . .
r r =X X + +z z
[e} 0 [o} yoyo
= —_ —_— —_
r r r ..r
e} [e} [o} e}
o = w =
2 2
r r
[0} [e}

VII.Compute {f and g using complete equations (22) and (23).

VIII. Returnto Step V. and compute new Sco, 3’0’ :zo. Repeat

the entire procedure.
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IX. Compare velocity components computed at each step with the
corresponding velocity components obtained in the previous step.
. -8 .
When differences reach a value of less than ¢ = 4x 10 ~ in

appropriate units, the iteration procedure is terminated.

4, Evaluation of the Method

The evaluation of the computational method is summarized in

Figure 4 and 5.

* A time interval between observations of about one minute, it
appears, results in the minimum error. When smaller intervals are used,
round off errors become significant. For larger time intervals the f and g
series become inaccurate. Figure 4 indicates that for a time interval between
observations of five mirutes the percentage velocity error for the lunar
trajectory is . 05 per cent corresponding to 12 mph error. Increasing the
time interval to ten minutes, yields a velocity error of .5 per cent, or
120 mph. These results indicate the initial velocity may be precisely
established, using a reasonable number of terms in the f and g series.

Because of its large eccentricity, the lunar trajectory is a relatively worse

case,

Figure 5 shows that, for a five minute interval, seven iterations
are required to reach the solution for the lunar orbit. If the interval is

increased to ten minutes, the velocity is established after eleven iterations.

Precision achievable by this technique is more than sufficient to

establish preliminary initial conditions.

C. DETERMINATION OF THE INITIAL CONDITIONS .FROM SIX RADAR
RANGE MEASUREMENTS

This study's third tracking scheme attempted to utilize only range
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measurements. Underlying ideas, and.the derivation of appropriate
expressions, can be found in Section II. For present purposes it is
sufficient tc recall that the method involves a solution of six equations,

linear in unknowns X , Y, Z , X , ¥ , ’z.o in which, at least initially, the
o 79’ To o

o
coefficients are only approximations to the true ones. Furthermore, if the
time intervals betwecn observations are equal, the coefficients' numerical
values are not far from unity. If the intervals are made deliberately unequal,

some coefficients will be_considerably larger or smaller than unity, but

in a manner that they are basically multiples of each other.
The latter observations have the following unfortunate consequence.

There are many methnds available for solving simultaneous linear
equations. However, all methods, with one exception, involve many successive
subtractions of quantities of nearly the same order of magnitude. This leads

to tho loss of significant figures which often makes the results meaningless.

Though the equations of the problem fell in the above category, an attempt
was made to solve them by (a) inverting the matrix and (b) by successive
elimination of the unknowns where division by the leading coefficient was

employed. This was done for equally and unequally spaced time intervals.

In either case, a point in the solution was reached where the original
seven significant figures were reduced to one or two. Use of double precision
in the computer arithmetic was to no avail. Generally, after the first try
the vaiues of X2 Yo 2o 5(0, 'yo, 5:0 were larger by one or two orders of

magnitude than those desired. No iteration was carried out because the

structure of the equations indicated futility of further computation.

The one exceptional method hinted at above was the solution of

simultaneous equations by the iteration method described in Reference (1).
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This method is free from the loss of significant figures due to the
subtractions of nearly equal quantities. Unfortunately the iterative process
converges only when each equation contains, compared to others, a large
coefficient, and this coefficient rnust be associated with different unknowns in
each equation. This implies that the dominant coefficients are arranged along
the principal diagonal of the coefficient matrix. Generally, such an arrange-
ment cannot be expected in the physical problem considered. A theorem
given in Reference (3) states-that, for the method to be applicable in each
equation of the system, the absolute value of the largest coeificient must be
greater than the sum of the absolute values of all the remaining coefficients

in that equation.

Simulated problems constructed for testing the over-all method do not
satisfy the above condition. Finally, it was found that the result of the first
iteration is quite sensitive to the initial estimate of T, It appears that the
problem is poo'rly conditioned. This difficulty cannot be attributed to
unfavorable geometrical arrangement of the orbit and the observer, because
in all other methods the selected example gave excellent agreement with
the known values of X0 Voo 2o 5(0, &o' 'zo. The basic problem is apparently

contained in the fact that the coefficients of the starting system of equations are

not really known, and the approximations used for these are insufficient.

The conclusion drawn is that the determination of the vehicle's position
and velocity components, from range measurements at a single station, is

not practical as formulated in the previous section.

Before abandoning this investigation an attempt was made to reformulate
the problem. In the previous scheme, the solution starts with a guess of T
The difficulty of finding a reasonably close initial value of geocentric distance
is obvious. However, instead of starting with T the angle between some

reference (vertical), and the direction of the antenna to the body at some time

t, could be estimated.
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The geometry is then:

¢ VEHICLE

o] B

r

CENTER OF EARTH

Using ¢ which is now supposed estimated, r is computed from

2

2
R+ p7 -2 pRcos(7m-9)

H
1]

> -
R + P6+29Rcos¢

2]
H

it 1s felt that ¢ can be estimated better than r. If this is allowed, it also
follows that the right ascension and declination a, 8§ can be estimated. This
in turn leads to values of topocentric coordinates £, 7, { and then to
geocentric position components x, y, z. The above follows from the well

known relations

& = pcosd cosa =x - X (24)

mn = pcosd sina =y -Y ‘ (25)

{ = psind =z - Z (26)
Furthermore:

r = ‘/xz + y2 + z2 (27)
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Finally since ¢ is supposed known and thereby r, angle B8 can be computed

from

rRcos 8 =xX+yY+2z2Z (28)
Note in the above equations that the unknown quantities are a, &, x, y, and z.
These equatio;ls can now be used to cbtain initial estimates of these parameters.
Thus, from (27):

(2 2 2)1/2
X = r -y -z

and using in (1), (2), (3) and (5):

pcoéS cosa =Jr2-y2—zz-}( (24')
p cos & sina =y -Y (25%)
P sind® =2z -2 (26%)
rRcos B = '/x'z-y2 zz X+yY+z2 | (28%)

Employing {(25') and (26') in {(24') and (28') one obtains

2 2
P cosacos5=Jr 1{ Pcos?d sina + Y) —(psin!i\{‘Z)2 (24'")

rRcosB =X rz-(pcos ® sina+ Y)Z -( psiné + Z)2

(28')
+ (Pcosd sina+ Y) Y+ (psind + Z) Z
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Consider equation {24''). Following a lengthy algebraic reduction, this

equation can be written as:

2
A cos §+ B

1 cosS+C1=O

1

where

. 2 2
A1= X cosa + Y sin a + Z
R2. o2 _ .2
B =2 [Xcosa+Ysin a] b '
2p
2 2 2

I—R+p o i3 2

C. = Z

S

Similarly, equation (28') can be reduced to
A sinza + B sina .+ C =0
where
A= pz <X2+ Y2> cos 2 &

2 2 - '
20 Y cos $ [(X + Y ).‘ 1'Rcos:@+ Z - (p sin8+Z>]

oy}
n

A

C

p sind + z |'<o sing + Z)‘/X2+ Y2> -2r RZ cos B+ ZYZZ

7

2 2 2 2 2 ' 2
+r R cos B+ Y <X +Y2) SIZRTRRNY cos,B-XZr2
Note that Al’ Bl, Cl do not depend on 8, and A, B, C do not depend on a ,
Equations (24'"') and (28'") are decoupled as far as aand § are concerned. The

two angular coordinates can be computed by successive approximations as

follows. Assume, for instance, a value of a in (24") and corr'xpute & . Using this
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$ in equation (28") compute a . In principle, the assumed and computed values
of amust be identical. Since the first try will not result in an identity, the
value of assumed in (24"') must be modified nntil o assumed -a computed is

reduced to a small quantity consistent with the desired precision,

The fact that equations (24'") and (28'') yield a multiplicity of roots will
be ignered, and the proper values of aand & will be assumed to have been found.
This being the case, equations (24), (25), and (26) yield the correspopding
values of &, 7, or x, y, z. Equations (24), (25), (26), and (28) can also
serve as a partial control because the trigonometric functions involved must
numerically be less than urity. If this is not ihe case, the value of r could be
moditied and the whole computation repeated. Assuming that reasonable values
of xo, yo, zo have been obtained, the procédure would be as follows. Using '

X0 Yoo zo obtained above in equation (17), Section II, namely,

a.r +a.XxX +a + a Z +a _X +a , 3 a z =C
n2 o n3 Yo nd ‘o n5 "o n6y0+ a? o n

a set of simultaneous equations in 5(0, 'yo, 'zo as unknowns is obtained.

Thus, using two additional measurements of p, Sco, 'yo, 'zo can be
computed. This procedure may result in better values of the velocity
components since subtractive processes have been considerably reduced.
Should this step result in reasonable values of 5{0, S’o’ and 'zo, equation (29)
could be used in its entirety, and X0 Vo 2, could be considered as unknowns
wherever they occur explicitly. The f and g series would be computed using

x zZ , X , 3 z obtained in the previous step.
o' Yo' %o’ *o’ Yo' %o P P

The iteration, as described in Section II would be attempted only if the

above scheme showed a reasonable success.

No computations based on this method have been attempted.
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IV. AUXILIARY COMPUTATIONS AND CONVERSION SUB-ROUTINES

In the description of the n-body Trajectory Program, Interim Report
#1, July 1960, it has been pointed out that the coordinate system used is ref-
erenced to the mean equinox of 1950.0. Thus, all basic information, i.e.,
planetary positions stored on magnetic tapes, is expressed in this frame of
reference. Consequently, the components of the position and velocity vectors,
which serve as the input to the trajec.tory program, must be consistent with

the accepted coordinate system.

The initial conditions for the n-body Trajectory Program are usually
derived from some tracking subroutine. Previously, it had been tacitly
assumed that the observed quantities are given in the proper frame of ref-
erence, making the output usable in the trajectory program. In practice
this assumption is not warranted. Observations will usually yield quantities
réferenced to the coordinate system, differing from 1950. 0 by at least the |
precession effect. If these observations (measured with respect to the
equinox of date) are used in a particular tracking subroutine, the resulting
output will not be usable by the trajectory program. Thus, the output of the
tracking computation, and the input to the n-body subroutine, must be matched

by an appropriate transformation.

The purpose of this section is to describe such transformations and

auxiliary computations provided with the n-body Trajectory Program.

Before discussing various detailed schemes, a number of general com-

ments are necessary.
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A. BASIC REQUIREMENTS
(a) Distances

Two systems of units are provided for all distance measurements.
These are astronomical units (A.U.) and the equatorial Earth radii. The
reason for this choice is that, in general, in all computations of the type
considered in this report, it is convenient to keep magnitudes of distances
near unity. Thus, for vehicles moving in the close vicinity of the Earth, the
above condition obtains if the distances are expressed in terms of the
Earth radius as a unit. Conversely the mean Earth-Sun distance is suitable
in computa..tions of the motion of probes to Venus, Mars, and other points in

the solar system.

Both units h:ve been provided to avoid limiting the program to lunar

vehicles.

Thus, prior to computations, range measurements should first be

converted to either astronomical units or Earth radii.

(b) Angles

All angular inputs employed by the conversion routines must be ex-
pressed in degrees and decimals of a degree. This particularly applies to
right ascension a which is often expressed in time measure. Note the con-

; . o] .
version factor is 15 /hour, 15'/minute, and 15" /second.

(c) Dates and Times

The dates and times of observation employed by the transformation

subroutines occur in two forms.

(1) The date and time of observation shall be expressed in

terms of universal time, in days and decimals of a day of
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the same month, for all observations, even if this entails

introducing a fictitious number of days in a month.

Example: Suppose that two measurements were made:

1935 Aug. 30.0006 UT and

1935 Sept. 2.9067 UT

0

They must then be expressed as

1935 Aug. 30.0006 UT and
1935 Aug. 33,9067 UT

(2) The date and time of observation to be also expressed in
Julian Days (JD) and decimals of a Julian Day. Note that
there are 365. 25 days in a Julian year. An extensive table
of Julian Day numbers is provided in Appendix A. Also,
Julian Day numbers are tabulated in yearly issues of the

Nautical Almanac and American Ephemeris.

Example: Days and times considered under (c) (1) ex-

pressed in JD are given by

JD 2428044.5006
JD 2428043.4067

(d) Geographic Coordinates of the Observation Site

In computations of the rectangular site coordinates, geographic co-

ordinates of the tracking station are required. These shall be expressed as

follows:

Geographic-longitude of the site A in degrees. The sign convention

adopted is:
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A >0 if East of Greenwich Meridian

A <0 if West of Greenwich Meridian

Geographic latitude of the site ¢ is taken as positive if North of the

equator, and negative if'South of the equator.

The altitude of the site above sea level ‘h‘ is expressed in astro-

nomical units or Earth equatorial radii.
Specific subroutines available in the program are considered below:

B. COMPUTATION OF RECTANGULAR GEOCENTRIC SITE COORDINATES

The geocentric components of the observer'!s position on the Earth's
surface are required by all tracking subroutines. These components can be
computed with respect to equinox of date, and then transformed into the co-
ordinate system of 1950.0, or ;:omputed directly with respect to equinox of

1950.0. In both cases, the procedure programmed is as follows:

1. Reduction to Geocentric Latitude

For reasons which will not be discussed here (see Reference 4 ), it
is necessary to reduce the observer's geodetic latitude to a geocentric one
prior to computing the components of the observer's position vector. The

appropriate expression utilized in the program is

1

S I
? ¢ 3600

[- 695 . 6635 sin 2¢ + 1.1731 sin 4¢ - O'.'0026 sin 6¢]

where ¢' is the geocentric latitude.

2. Magnitude of the Geocentric Racius Vector of the Site

The geocentric radius vector R is determined from
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R=h+a(.998320047+.001683494 cos 2¢ -. 000003549 cos 4¢ +,000000008cos 6 P )

In the above, a = equatorial radius of the Earth and h is the altitude of the
site above sea level. Note that R may be expressed either in astronomical

units or equatorial Earth radii.

3. Computation of Sidereal Time

Since the Earth rotates about its axis, the components of R will be
functions of time. The time involved is the ''star time,' generally called
the sidereal time - a measure of the angle between the observer's meridian

and the vernal equinox.
In the computer program, sidercal time is computed as follows:

a 1. .
(a) First Greenwich Mean Sidereal Time (GMST) at O' Universal

Time as measured by the mean equinox of date is given by

l - .
GMST = 23925%836+ 8, 640, 1845542 1D - 2313020.0
S 36525
JD - 2415020.0 \ °
070929 : ]
36525

Only that part of the resulting value is taken which is less than 24 hours.
In the above, JD is the Julian date at midnight of the beginning of the day at
which the GMST 1is desired, and 2415020.0 corresponds to the noon of
January 0, 1900. Note that GMST is given in hours.

(b) The Local Sidereal Time is computed from

LST - {GMST + 24(UT) + 28565 [24(UT)] e
3600 15

in degrees

In the above, UT = universal time expressed in decimals of a day.
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GMST computed in (a) differs from that tabulated in the Almanac

by nutation terms.

4. Rectangular Components of the Observer

Once LST has been computed, the observer's position vector can be

resolved in the coordinate system with respect to which LST is given.

Thus
X =R cos ¢' cos (LST)
= R cos ¢ ' sin (LST)
Z =R sin ¢’

with respect to the mean equinox of date.

Note: If a close Earth satellite is used, X, Y, Z determine.the ob-
server's position with respect to the center of force. However,
for the deep space probes, the center of force will most likely
reside in the Sun. In this case, designate by Xe' Y@, Z@, the
components of the Sun's position vector. These components are
tabulated in the Almanacs. Quantities X, Y, Z, computed above
are now small corrections for the parallax since observations

are made from the surface of the Earth. The Sun's coordinates,

with respect to the observation site, are given by

X =X +X
@
"
Y =Y +Y
[C]
"
zZ =z +Z
L

In astronomical practice, it must be mentioned, the Sun-to-Earth direc-

tion is taken positive. However, the Sun's coordinates tabulated in the
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Almanacs are m;aaSured with respect to the Earth. This convention is not
observed in this report. It is always assumed that the inertial origin rests
at the center of force and all distances are measured positive from this cen-
ter. Consequently, if tabulated values of the Sun's coordinates are used in
formulas of this report, always reverse the algebraic sign of the tabulated
value. 1If all computations are assumed to be carried out in the coordinate

system of 1950.0, X, Y, and Z of .late must be converted to the standard

reference system.

C. REDUCTION OF RECTANGULAR COORDINATES X, Y, Z OF DATE
TO EQUINCX OF 1950.0

Designate the rectangular components of a vector given with respect to

equinox of date by X Y Z_.. The conversion of these to the coordinate

D' "D D
system, fixed by the equinox of date, is effected by the following trans-

formation:

x 1950 AXD

In this expression

X 1950 / *p
: X -
" 1

xlgso 950/ D D
7/
N\ 21650 Zh-
411 32 213
A= 223 2o a3
331 332 %45
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where the elements of matrix aij are given by the following formulas

|
o

a =

. 00000000-.00029696 (A t)2 -. 00000014 { At)3

11
a, = -.02234941 At -.00000676 (At)2 + .00000221 (At)3
a , = --00971691 At +.00000206 (882 +. 00000098 (At)>
a, = 02234941 Bt + 00000676 (a6)% - 00000221 (A1)
a,, = 1.00000000 -. 00024975 (8¢)% - 00000015 (A1)

i 2 3
a,, =-00010858 (4t)" -. 00000003 ( At)
ay) = 00971691 At-.00000206 ( Aty . 00000098 (At)
a,, = - 00010858 ( 2t)% -. 00000003 ( Af)>
a,, = 1.00000000 -. 00004721 (8t)% +.00000002 (A1)

In the above expressions

2433281.5 - JD
36525

At =

where JD 2433281.5 corresponds to the beginning of the Besselian year 1950
{namely 1950.0), and JD to the date and time at which X, Y, Z are given.
Thus, A t is in eff- <t a measure of Julian centuries taken from 1950, 0.

Numerical constants in a,j were taken from Reference 5.
i

D. REDUCTION OF (X, Y, Z) 1950.0 TO THOSE OF DATE

if matrix AD"1950 is known, this transformation is effected by

XD i A h X1950.o

TG A
where A is reflected about the principal diagonal. However, it is

simpler to recompute the transformation matrix. This is done simply by
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inverting the sign in At. Thus, the new At becomes

JD - 2433281.5
36525

At =

Using this in the series expressions for a;. and interchanging subscripts

1950. 0 and D the desired transformation is obtained.

Note: In the American Ephemeris and Nautical Almanac it is now

customary to tabulate solar coordinates with respect to both the
mean equinox of the beginning of a given year and the equinox of
1950.0. In older Almanacs, solar coordinates were tabulated
oniy with recspect to the mean equinox f the beginning of the
year. Under the latter conditions in t ¢ ming Xe. Yo’ Zo

between equinoxes, JD will correspond to the L ginning of the

Besselian year of interest.

The solar coordinates at other than tawvular points are obtained from
published ephemerides by interpolation. There is no reason why the above

reduction formulas could not be used for this purpose, provided Xo' Y , Z

-

e
are known for some date.

It is well kncwn that the Sun is slightly ahead of the position given by
theory from which the solar coordinates are computed. This discrepancy

can be largely eliminated if the Sun's coordinates are interpolated for the

time

d
Y Desired + 0 .000282

It should be noted that the above transformations are valid for any vector

and, consequently, equally applicable to transformations of the velocity com-"

ponents.
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E. CONVERSION OF AZIMUTH AND ELEVATION TO RIGHT ASCENSION
AND DECLINATION

Another important transformation is conversion of elevation-azimuth

angular coordinates to right ascension and declination coordinates.

Conventional radars are not well adapted to equatorial mountings, and the
angular output is of necessity given with respect to the local elevation-azimuth

coordinate system.

Designate by a - right ascension
6 - declination
E - elevation
A - azimuth
HA

- hour angle

In the northern hemisphere, azimuth will always be measured from the

north point clockwise through 360°.

The hour angle is measured West from the observer's meridian through

360°.

The right ascension is measured East from the first point of Aries
through 360° The declination is taken positive North of celestial equator

and negative South of the latter.

Since computations of preliminary orbits from angular data are more
convenient when the latter are given in the equatorial system, elevation and

azimuth are converted by the fcllowing expressions
1. Declination § is computed from

siny = sin ¢' sin E + cos ¢' cos E cos A
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The algebraic sign of sin § gives the sign of §
2. The right ascension a is computed as follows:
First, the hour angle of the observed body is computed from

cos E sin A

sin HA = -
cos §
cos HA = sin E cos ¢' - cos E sin ¢’ cos A
cos

The above expressions determine both the hour angle and its ~uadrant.
The right ascension a of the observed object is determined from
a = LST - HA

The result can be given in either time or angular measure. In this pro-

gram a is always computed in degrees.

The Local Sidereal Time is taken from B, 3{(b). Since the elevation and
azimuth are measured with respect tc the coordinate system as existing at
the time of measurement, a and & from the above expressions are referred

to the equinox of date.
Often these quantities must be reduced to the standard equinox of 1950. 0.
F. REDUCTION OF a AND 3 FROM THE EQUINOX OF DATE TO THE

REFERENCE EQUINOX

Let o and & referred to the equinox of date be designated by a, and

SD. These are obtained by direct measurement or from computation D.
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The reduction can be accomnplished in two ways. One of these is de-
scribed in Reference (4) p. 240. The other method is substantially simpler

although it involves an iterative procedure.

Computation is arranged as follows:

Suppose that a_ and & are given with respect to equinox of t. and values at

D D 1
t, are desired where t2 > tl.
1. Certain quantitics m and n are computed for the middle of the in-

terval involved. These are given by

1 Pon 0 D - 24332
m = [46.099051—0.0002790 (J 433281.5 degrees
3600 . 365. 25
1 " " - 24
n = [20. 0426 - 0.000085 JD 33 degrees
3600 365.
t. + t2

Note that (JD 2433281.5)/365. 25 will correspondto t =

Using a tland Stl in expressions for the annual precession in right ascen-

sion and declination, results in

da

— = m + nsin a tan &

d t t
1 1

ds = ncos a

dt 1

The approximate values of a, and § ¢ are then given by
2 2
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a = a +t {t,-t ) —
t2 t1 2 1 dt
ds
§, _ 8 +(t,-t) —
t2 tl 2 1 dt
] ]
The means between a , & and a , & are denoted by a and ¢
2 % b

2. Employing a' and &' in

a better approximation is obtained for the effects of annua i} reces-

sion. Thus, more nearly correct values of « 5 and St are
2

given by

This procedure can be repeated as many times as desired.
Generally, even when (t2 - tl) is as large as 50 years, two iterations

lead to an error of less than one second of time in a, and less than a second

of arcin & . This is entirely sufficient for preliminary computations.
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If the epoch t2 < t1 the procedure is the same as above.

Note, however, that the approximations are given b
PP g Y

(t t) da
a, = aqa - = ——
t1 ,t2 1 2° dt
dé
5§, =8 -t t))
1
t1 ty . 2
Thus, depending on the interval | t2 - t1 I the reduction can pro-

ceed from any equinox to any other one.

G. EPHEMERIS COMPUTATION

The purpose of any tracking and orbit computation program is, not only
to determine the orbit, but to predic?: the future positions of the body. These
data, the so-called ephemeris, are needed to enable the observer to re-

acquire the body if the tracking is intermittent.

Ephemeris information can best be given as angular data, and possibly
range data with respect to a coordinate system fixed at the observer's site.

The predicted positions can be given with respect to the equinox of date or

the equinox of 1950. 0.
The computational procedure is as follows:

1. The n-bodyprogram yields values of the vehicle's position x, y, z
at a time t with respect to equinox of 1950.0. The units of distance can be
astronomical units, Earth equatorial radii, or kilometers. Denote these

components by X ; Yt ; Zt
i 1950 i 1950 i 1950
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2. At assigned universal times t. rectangular coordinates of site Xt ;
' i
Y, . Zt are computed by methods of section B. If the Sun's coordinates

t. g
1 1

are desired, use the appropriate Almanac.

3. Reduce these to X , Y

t , Z
11950 i 1950

t.
i 1950
4. The topocentric range p expressed in appropriate units is com-

puted from

1/2
- 2 2 21
p. = X -X Hy -Y +\z - Z
t. t. t. k5 t t
i i 1950 i 1950 _I

% 1950 i 1950 i 1950 i 1950
5. The declination ¢ at t. is computed from
i 1950
%t g
. i 1950 i 1950
sin St 5
i 1950 Py
i
The algebraic sign of S 7 -Z determines

Y 1950 Y1950 % 1950
the sign of 3 .

The right ascension at is determined from expressions
i1950
X -X
t, t.
_ 11950 11950
cos a =

i1950 #, cos?,
i i 1950

yt i Yt
~ Y1950 % 1950
11950 p, cos B
3 i 1950

sin a

6. 1If desired, a and Sr are reduced to the equinox of
i 1950 "1 1950

date by method.outlined in section F.
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Thus, computations indicated in 1 through 6 result in

® .or a and by

Pe r % C %
i i 1950 i 1950 i i

If the observing instrument is a radar, more appropriate angular

quantities are azimuth and elevation. These are obtained as follows.

7. Compute the Local Sidereal Time (LST) as measured by the equinox

of date or equinox of 1959. 0 using methods of Section B. 3.

8. Using «a or a,_ from G. 6 the Local Hour Angle (LHA)
t. t.
i 1950 i
of the body is computed from

(LHA)t, = (LST)t_ - O-t.
i 1 i

It must be observed that LLST and @ used in the above must be re-

ierred to the same equinox.

9. Eilevation at time t. is obtained from
i

"

8 + cos @' cos & . cos (LHA)t

. . 1 .
sin Et = sin ¢’ sin
i i

where ¢' has been defined in B.1. The algebraic sign of sin Et determines
i

the sign of Et .
i

10. Azimuth is determined uniquely from expressions

-sin (LHA)t cos & ;
3 1

sin At =
i cos E
4

i
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and

sin & - sin ¢' sin E
t. t.
cos At = ! !
i cos ¢' cos Et
i
A careful distinction must be made between A , E

11950.0 % 1950.0

and At . Et . Indirectly, these values differ by effects of precession.
i i

As a result of computations 6 through 10 azimuth and elevation are

obtained referred to the horizon plane and zenith of date or that of 1950. 0.

All computations discussed above are provided as separate sub-
routines with the main n-body Trajectory Program. An attempt has been
made to.make these subroutires as independent as possible. In some cases,
however, total separation is not practical. This is'particularly true in con-
verting @, & to A, E. This subroutine utilizes the hour angle which in turn
requires Local Sidereal Time. However, the computation of LLST is tied up
with the computatior of the observer's coordinates on the Earth's surface.
Thus, in cases where LST alone is required, some superfluous information

may be produced.

Occasionally, in tracking routires, it is required to find the sidereal

time measur.:d by equinox at time t_ if the sidereal time measured by equinox

2
t, is kncwn. This reduction can be accomplished by utilizing methods of B. 3(a),

(b}, but for a few dates the use of the 7090 subroutines may not be warranted.
Under these conditicns, a simpler procedure is available and, although it is

not a part of this program, it wiil be described below.
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H. REDUCTION OF SIDEREAL TIME REGULATED BY A MOVING EQUINOX
TO SIDEREAL TIME REGULATED BY A STATIONARY EQUINOX

The relation between the sidereal time regulated by a stationary equinox

and the mean solar time is given by

d@s = 1.002737810 dt

The.constant of proportionality is the ratio between the mean solar day
and sidereal day. Its exact value varies depending upon the author. However,

tor most purposes the value given above is sufficiently accurate.
Integrating the above obtains

® = ® + 1.002737810 (t -t ) (30)
S (e} (6]

where @O is the constant of integration. The sidereal time ® can be
8 o

obtained from the Almanac or the formula given in Section B.

h 1 [ s s s Z—I
GMST at O UT = 3—60—0- L23925.836+8640184.542 AOt+0.0929 (At) J

JD-2415020.0
where At =
36525
and JD =t
o
The Greenwich MST at any cther universal time is then given by equation

(1). It must be carefully noted that @ s computed by (1) is measured-by the

stationary equinox of t .
o
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To correct this time to GMST, regulated by the moving equinox, recall
that the general precession of the first point of Aries amounts to 50'. 2675 /year
as of 1950,0. Since the cosine of obliquity of the ecliptic for 1950.0 is

COs E1950 = .91743695, it follows that along a stationary equator precession

is given by

50.2675 cos € 46 117/year = 3.5074/year =

1950
d
0°008417/day = 0. 00000009742 /day.

In t vears tie equinox will precess along the equator by an amount
s
A O = 3.0744841 t.
s
Sidereal time measured by the moving equinox is then given by

GMST = @ +1.002737810 (t -t )+ A @ .
[o] 0 S

Positive sign is taken if t > to, negative one whent <t . In general then
o
GMST = GO + 1.002737810(t - to) + 3.50744841(t -t ). (31)
o

To make the method clearer a numerical evample ic gi-

giwen.
Example:

h
Suppose that GMST at 0" UT on Sept. 3, 1935,is equal to 22" 44™

5 .4 = . .
%6 .33. Let us compute the sidereal time on Sept. 3, 1950.

From Equation (1) it follows that

h
GMST ... = 22 44™48% 38 + 1.002737810 (2433527. 5 - 2428048. 5)

5494d. 9482431
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Its fractional part gives

h

GMS = 22" 45™ 28% 20

T 1950

This is the GMST on Sept. 3, 1950,as measured by the stationary equinox of
Sept. 3, 1935. However, to obtain GMST as measured by the equinox of
Sept. 3, 1950, a correction for precession must be introduced. This cor-

rection is given by
= S y 5
A G)S = 3.0744841 x 1570006845 = 46.12

Since the equinox of 1950 is in advance of equinox of 1935 by the above

amount, there results

h, m__s s h,, m_ s
A = 2 2 2 = ;
GMST Sept. 3, 1950 2745 2820+ 46.1 22461473

Converse Procblem

Given equinox of Sept. 3, 1950,at which GMST at OhUT is 22h 46™

14°. 3, compute GMST on Sept. 3, 1935 as regulated by the stationary equinox

of sept. 3, 1950,and the moving equinox of Sept. 3, 1935.

GMST = 22P46™ 1453 - 5494%004610

on Sept. 3, 1955

measured by y 1450

The fractional part of this number gives

aMmsT = & 9483151 = 220 45™ 345 4

Since the equinox of Sept. 3, 1935, lags the equinox of Sept. 3, 1950 by

an amount
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it follows

GMST = 22°44™48°.30
as measurcd by the moving equinox of Sept. 3, 1935. It is alsn useful to

note that & € is the angle between the {wo equinoxes in question. :
s

Thus, in equation (2) there exists a simple method of evaluating sidereal
times as measured by any desired equinox, provided sidercal time is known

at some instant of time.

The discussion of auxiliary subroutines will be concluded by giving sev-
eral block diagrarmns of possible tracking computations involving situations

frequently encountered in practice.

i. SCHEMATICS OF TYPICAL COMPUTATIONS

Problem 1

Consider a tracking station, whose geographic coordinates are ¢ and A
that is capable of measuring angular positions of a close Earth satellite with
respect to the geocentric equatorial coordinate system. The absolute mini-
mum of information necessary to estimate the satellite's motion consists of
a and 5 measured at three different times. Assume ¢ and & are measured
R il A

JOR I OR = W2
i P

The resulting computational scheme and the flow of information is shown

in Figure 6. Its main features are as follows:

The first part of the computation can be carried out in two ways. The
measured right ascension and declination, both with respect to equinox of "
. . . . . .
date ( aMD’ EMD),can be used directly in the three angle tracking routine to
obtain a preliminary value of the vehicle position and velocity (xo, ACLEN:
o

X, Y , 2 ) at some time t .
o ‘0o o o
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The n-body Trajectory Program cannot accept these values as initial
conditions since they are referenced to the equinox of date. Thus I etc.,
must be converted to the epoch of 1950. 0. Under these conditions the proper

routing is obtained by placing S1 at position 2, 52 at 2.

Another way is to convert measured data to epoch of 1950.0. Under
these conditions the output of the three-angle tracking routine is directly

usable by the 7090 program. The proper connections are then Sl(l), Sz(l).

The output of the 7090 program is in the form: of rectangular components
of position and velocity of the vehicle at some future time t referenced to

equinox of 1950. 0.

Following this, two possibilities exist. One is to compute the predicted
angular positiens with respect to 1950. 0. The second possibility is to com-
pute all predicted positions with respect to the equinox of date. Figure 6

shows both alternatives.

The user can select the flow of computation as desired by rearranging

the c¢rder of various subroutines.

However, it is strongly recommended that all computations be carried

out in a coordinate system referenced to the equinnx

(8]
[ 52

15506.0. Thus, alil
measured data as well as auxiliary quantities should be expressed in this
frame of reference. This accomplishes two things. First, the method is in
accord with the commonly accepted astronomical practice of referring data
to a standard epoch. Secondly, comparison with computations of other in-

vestigators is possible without need for further transformations.

In some instances, of course, adherence to this recommendation may

be awkward.
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This is particularly true in the case of ephemerides prepared for radar

stations in terms of elevation and azimuth.

Problem 2

Consider a situation which is in all respects identical with that of prob-
lem 1 with the exception that the measured angular data are expressed in

terms of azimuth A and elevation E.

The block diagram of the computation is then arranged as in Figure 7.

From this figure it can be seen that problem 2 requires the addition of a
subroutine converting measured azimuth and elevation to right ascension and

declination of date.

The essential output of ephemeris computation in this problém consists

of azimuth, elevation, and range p

Problem 3

A tracking situation is now considered in which an instrument, such as
radar, measures range P and the associated angle which may be given as

elevation and azimuth, or right ascension and declination.

Because a complete position vector is measured, it is merely necessary
to compute velocity components at some time t which, in conjunction with the
measured position components, can be used as initial conditions for the inain

prcgram.

If the tracking instrument is equatorially mounted, the computation can

be arranged as shown in Figure 8.
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As in Problem 1, the first part of the computation can be carried out in
the coordinate system of date, or that referenced to equinox 1950.0. In the
first case, the measured A and E are first converted to a and & of date.
These are used to compute the components of the measured position vector

at two different times from expressions

£ = pPcos & cos a

7 = pPcos o sin a

{ = psin &
These quantities used in

x = £+ X

y =nt+tY

z =0+ Z

yield the components of the geocentric position vector of the vehicle. These
components are employed in the'two-range vector iterative routine to produce
the velocity components at one of the measured instants of time. Before
using these in the n-body Trajectory Program, conversion to the equinox of
1950. 0 must be effccted. The computation then follows the same lines as in

Problems 1 and 2.

Switches Sl a=id SZ are connccteu Lo positions 1 and 2 for the proper flow

of information.

If the iteration routine is to producex , v , z , x , v , 2z referenced
® ‘0o o e ‘o

to epoch 1950.0, S, 1is connected to position 2 and S2 to position 1.

a

Problem 4

Though similar to Problem 3, this situation's tracking instrument is

assumed to be mounted equatorially. The measured data therefore
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consists of range p and the associated right ascension a and declina-

tion §

The flow of information is very similar to that found in Figure 6 and

shown in Figure 9.

Positions of switches S, and S2 for proper flow of information are either
Sl(l) and Sz(l) or SI(Z) and SZ(Z\ depending upon the referencing of the

angular data to the equinox of date or 1950.0.

Diagrams similar to those given in Figures 6, 7, 8, and 9 can be con-
structed for any tracking subroutine. From these diagrams it is apparent
that a substantial number of blocks contained in the conversion subroutines
disappear if computations are consistently carried out in coordinates ref-

erenced to some standard equinox, e.g., 1950.0.

No block diagram is given for the case of 6 ranges. Operation of this

routine in its present formulation was found unreliable.

Appendix B of this report consist of Operational Directories and
FORTRAN Listings of programs discussed above, as well sample check

problems for each subroutine.
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V. ERROR ANALYSIS OF HYPERBOLIC LUNAR IMPACT TRAJECTORIES

A. INTRODUCTION

As a part of demonstrating the capabilities of the Lunar Trajectcry
Computer Program described earlier in this report a study was performed of
tolerances in initial conditions involved in lunar flight impacting the Moon's

surface.

For obvious reasons it was found irapractical to consider all
possible impact trajectories covering the velocity range from elliptical to
hyperbolic ones. Likewise, there was no attempt to arrange trajectories by
firing locations and dates. As a consequence of these considerations, it was
decided to consider only trajectories of classes ISa+ or IS°” in the sense of
Egorov [10] These classes of trajectories refer tc impacts occurring on
the ascending branches of trajectories. This in turn implies that the velocity
with respect to the Earth is in the hyperbolic range. The actual value of the
initial velocity is, in principle, immaterial for purposes of this demonstratich.
However, in general, higher velocity trajectories impose tighter tolerances

on orientations of the initial position and velocity vectors.

The general character of this study can be summarized as follows:

(a) A nominal hyperbolic trajectory is chosen.

(b} It is a three dimensional trajectory. There are no restrictions
commonly invoked in assuming that the vehicle moves in the Earth-

Moon plane.
(¢) The vehicle moves in the field of the Sun, the Earth, and the Moon.

(d) Three dates are considered. These correspond to the following phases

of the Moon.
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(1) First Quarter (Nov. 7, 1959)
(2) Full Moon (Nov. 15, 1959)
(3) Last Quarter (Nov. 23, 1959)

This arrangement of the study may at least qualitatively rcveal effects

of the changing geometrical configuration of the three main bodies.

B, NOMINAL TRAJECTORIES

Nominal trajectories for each phase of the moon at the above dates have
been established empirically. An essential requirement that has been im-
posed on these trajectories is that the hit must occur at the center of the
apparent disc of the Moon. Its angular coordinates as seen from the Earth

have been taken from the Nautical Almanac.

The initial conditions for the differential equations of motion were de-
termined experimentally in units of A. U. and A.U. /hour. 1Jpon converting
we find the burnout altitude h = 388.5 st. miles and the burnout velocity
V = 7.177 st. miles/sec. We have succeeded in holding these values constant
for the three dates indicated. Thus, the only difference in initial conditions

between the three sets of runs occurs in the orientation of vectors p and v.

(See Figure 10).

The following procedure was followed in arriving at a nominal trajectory.
As a first step, conditions have been taken which result in an impact for an
idealized problem based on either two body approximations or previous com-
puter runs. These initial conditions are used in the Lunar program to obtain
a trajectory. This trajectory in most cases strikes the Moon, but not at the
desired place. Following this the initial velocity is changed by a small
increment, and the computation is repeated. After three runs are ob-
tained, an estimate is made of the differential correction required to effect

the desired impact. This correction is usually not sufficient; consequently,
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the procedure described above is. repeated several times until the strike occurs
at the desired place. It was found that in al) three phases of the moon the
center of the apparent disc of the Moon could be hit in about 9 tries. The
resulting error between the computed and observed angular coordinates is in

the neighborhood of 1 second of arc.

C. SENSITIVITY OF THE IMPACT POINT TO ERRORS IN INITIAL
CONDITIONS
In the description of the Lunar Trajectory Program it was indicated that
the program accepts the components of the position and velocity vector
x , v,z ;;{ 5 )7' , Z_)at some time t_ as the basic input. There are
o ‘0 o o "o o o
several disadvantages in using these inputs in the error analysis considered
here. First of all, most measuring instruments work in a spherical ccordinate

system which is more natural. Thus, the above components are connected

with the spherical coordinates by the usual tran:zformation,

K = o Cos g cos @ X = v COs gqcos 3
y = psin '8 cos ¢ y = v cos a sin £ (32)
z= psin ¢ z = vsin a \

Thus the original inputs are replaced by #,¢,a,3, o, v at time to. In the
equations above, p is the magnitude of the initial position vector, g is the
right ascension, and ¢ is the declination. Similarly, v is the magnitude of
the initial velocity vector, and a, and B are the two corresponding angular
coordinates. The coordinate system employed here is an equatorial one in
the astronomical sense. The above relations underscore another difficulty.
So far as the computation of the trajectory is concerned X, ¥, z2; ;c, ;r, z are
certainly independent quantities. However, as soon as the measuring in-
strument enters the scene we find that these quantities‘ are related. Thus

it is, for instance, impossible to change p without changing x, y, z simul-

taneously. A similar situation exists with regard to the angular coordinates.
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In view of the above it has been decided to employ spherical coordinates
in our study of impact point errors. From the practical point of view this
implies that any uncertainty in one of the spherical components must be con-
verted to uncertainty in the rectangular components before it can be used in the

computer program.,

It has been found that in dealing with high speed trajectories (e.g. hyper-
bolic), 8-place accuracy in input is sufficient to furnish accurate, perturbed
trajectories. However, in elliptical trajectories, where the magnitude of the
velocity is dccreased, it has become appdrent that the lunar program demands
accuracy of input to 10 or more places in order to furnish output of sufficient
numerical accuracy. This would be especially true when mid-course guidance

parameters are to be generated.

Response of the impact point to errors in one of the independent variables
is evaluated by holding other variables fixed and varying the remaining one
over a range of values. The maximum ailowable error is that which results
in a "skimming' impact on the Moon. The amount of miss due to an error in
the corresponding variable can be conveniently measured in terms of the
distance S on the surface of the Moon between the nominal and the perturbed
impact points. This distance is in effect computed from six measured
quantities o, 4, ¢, v, a, and £, which are assumed to be mutually independent.

Thus,

S=S(p, v, ¢, v, a, ). (33)

Since the deviation from the nominal impact point is measured, S is equiva-

lent to an incremental miss, which to the first order of approximation can be

expressed as

35 s s 3 :
S=AMMM=[—]ap + a_\AeJr E-S—Aqg+ 28 av e (22) pa+ B-EA,B, (34)
3,{; 86} a¢ v da B,B

where Ap, Af, etc. represent errors in the corresponding quantities.
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It is then evident that a successive independent variation of one of the
variables will result in relations S = S (p), S = S(¢), etc., each of which can
yield partial derivatives in equation (34). These derivatives will be tezmed
""error or sensitivity' coefficients. It is obvious that relation (34) assumes
that for small deviations the miss can be written as a linear combination of

errors. Just where a particular errcor ceases to be small cannot be evaluated

until S is obtained.

Prior to evaluation of S the range of errors in a particular variable shouldbe
decided on in order to result in ~ skimming impact. There must be a sufficient
number of points within this range in ord;ar to obtain S. One appraoch is to
repeat the same procedure as used in establishing the nominal trajectory.

The final approach adopted in this work will be described later in the report.

For the present, however, the description of the computation as employed

here will be continued.

The early approach was to hold all variables but one constant at values
corresponding to those of the nominal trajectory and to vary the remaining one
by small increments. Values of X, y, z, X, y, z corresponding to these
increments were computed from equation(32) by employing an LGP-30 Computer
subroutine. The resulting quantities are then fed to the Lunar Trajectory

Program. The output of this computation are the following quantities:

X,y,zand r of the vehiclie from the Earth

e e ® . ——
X,V.z, and v cf the vehicle with respect tc the Earth
X,¥,2Z, and r of the vehicle from the Moon

X,¥,2, and r of the vehicle from the Sun

t - Corre.ponding time

7 o




The units employed are astronomical units, astronomical units per hour,
and hours. The nominal radius of the Moon (assumed spherical) was taken 4s
RM =1.1625090 x 10-5 AU. The initial valucs of 8, ¢, o ,8 are obtained

from equation (32).

As indicated earlier the run is terminated by prescribing either a maxi-
mum running time or a2 minimum distance from the Moon's center. In neither
case, however, are the coordinates of the impact point obtained directly.
These points must be obtained by interpolation from the computed points that
give the position of the vehicle from the Moon as a function of time. The
first step is to obtain the time of impact. For purposes of this investigation,

use is made of Everett's interpolation formula in the form

2 2
f+f 5 .
+ 0+ P 81/2+ 5 50 + FZ 51 (35)

Various quantities in this relation are obtained accerding to the foilowing

scheme: > >
t f 8h/2 8n Sn/2
1] 8 =f -f
-1/2 70 -1 2
t f 8§ = & $
0 0 0 1/2 -1/2
51/2=f1-f0 53 52 52
t f 1/2 1~ 0
. . 52— H 5
53/2=f2-f1 1 3/2 1/2
t") f")

In the above t is the independent variable (time) and f can stand for r,x, vy, z

or any other dependent variable., Constants E_ and F_ are given by

2 2

g - Rl-Dp-2) L _ plp-Diptl)
: 6 L2 6

where p is the interpolation fraction such that ¢ <p <1.



In determining the selenocentric coordinates of the impact point equation
(4) was employed in the form
2 2 2
Ry, = 2, (X +Po, ), +E, (P8 0+ F,(p)5,]) (36)

i=x,vy, z

A subroutine was written for the LGP-30 computer to obtain p from

equation (36} by succes

(U]

ive approximsations using Newton's Method.
,
The above computation simultaneously yields values of x,y, z of the

impact point.

At the time this study was begun, and largely by coincidence, several
runs were terminated with only one point recorded after impact occurred.
As (35) indicates, Everett's interpolation formula required two values of the
argument on either side of the derived value of the function. Tc compensate
for the lack of a sufficient number of tabular points, two additional sub-
programs were written for the LGP-30. A Newtonian formula was employed
based on five points and differences on a horizontal line. Also a six point
Lagrangian interpolation formula was tested. Both methods, however,
were inadequate because of their failure to provide the necessary degree
of precision. An accurate value, arrived at by using Everett's scheme

could only be approached to four places with Lagrange and Newton methods.
Using this comparison as the basis, machine operators have been advised
to terminate a run on a more comfortable maximum time, or on impact plus

three-or more points.

The value of miss distance follows then directly from

—— _
RM RM XNXI + YNYI + zNzI
R ) 2 (37)
RM RM
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and. N, I denote nominal and impact respectively, Finally

It must be realized that S, as c'omputed here and used in subsequent work,

contains no direction information.

S can now be plotted versus the variable in question, as, for instance,
in Figure 11. Note that the discontinuity at the origin is the consequence of

definition of 5 and the manner in which it is measured. The slope of such
2S

a relation represents
[og
1

where o, is any of the independent variables.
1

98 : . . o o
The plot of TaTl- can be obtained by numerical differertiation of the o(cr,l)
relation. Caution must be exercised in putting too much trust in this result
because in any process where numerical differentiation is involved there is a
significant loss of accuracy. This is particularly true with regard to the first

attempts where the number of points defining S was insufficient as, for

instance, in Figure 12. In other cases where the distribution of points is
more favorable aas_ is considerably smoother, as shown in Figure 13.
o1
In either case, however, the linear trend of S or s extends only over
N o'-

i
a limited part of the lunar surface. Thereafter relation {3) ceases tobe a

good approximation.

The procedure just described was found somewhat wasteful of computing

time. [t was also found that it resulted in too many complete misses.

It was noticed, however, that the plot of the distance of closest approach
rp to the Moon's center versus error [.\cr.l resulted in a curve which could be

represented remarkably wellby a hyperbola of the form

2 o)
(y - yo) e-x0)®
b2 a2
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An example of this is shown in Figure 14.

This situation was found to hold for all runs made in this investigation.
It must be stated emphatically that there is no analytical justificaticn for this

and the use of this fact is predicated strictly on convenience.

The choice of hyperbola is not essential. It is conceivable that other
curves could serve the same purpose. If it is agreed to use the above fact,
the intersection of rp (& o,) with RM gives the maximum possible errors

1

allowed, beyond which the Moon is missed entirely.

In additicn, the bounding errors will indicate how Aci should be distributed
to obtain S(g.) with maximum efficiency. Uiform spacing is very important
i

especially in the determination of the partial derivatives.

An item from the preceeding discussion deserving some elaboration is
the determination of the fictitious distance of closest approach rp. As in the
case of the impact point, rp cannot be obtained directly from the computer
runs. To obtain this quantity the numerical minimum of r can be found by
using various interpolation formulae. This procedure is not very accurate
because the trajectory near the perilune is rather flat for the high velocity

empioyed here. Secondly, the procedure is rather tedious.

It 1s possible to obtain rp in a somewhat different manner by using com-
puted tabular points. First it should be noted that regardless of velocity the
trajectory which does not result in a capture is a hyperbola as far as the

observer on the Moon is concerned.

The following equation can then be written:

r, = ale - 1), (39)

where a is the real axis of the hyperbola and e its eccentricity.
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Now at any three tabular peints in the neighborhood of r ,

r, = P
l +ecost 1

L. p
l+ecos(61~A€l)

(40)
P
l+ecos(6l - AG)

=
It

L2
where p = ale - 1)and € is the true ancmaly. Also,

1 2 A81

o)

'
@
1

> 3 LY

o

AE=D6 + A6,
1 2

The increments of the true anomaly are obtained from

—> — — —
T r T T
1 2 .
cos A 6, = andcosAezl_._Z’_
1 r T, r r

1°3
Thus in equation (40), p, e, and 6 , are unknown.

The simult"~ .ous solution
of (40) yields

e
n

i -s'—i-l-l_A-e—(Cosﬂe —l) + (l-COSA 81)
1 T

sin A 4] / ) ()
- cos A 81 +

T
- cosA@g-
sin A & ( ra

T2
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The quantity 91 is obtained from

p-T, T,
\, = cos A g +tan 9sinb 6. (42)
P-T 2

The eccentricity follows from

ecos ¢, = - 1. (43)

[a—

Finally, a is obtained from

. (44)

All quantities necessary to obtain rp from eguation (39) are now available.
This computation was performed on the LGP-30 computer.

In the above a description was given of all the supplementary computations
required to obtain the desired information from the main computer runs. These
subroutines could very profitably be included in the main program in order to

prevent the interruption of computation.

D. DISCUSSION OF RESULTS

As an example a discussion shall be given of the results obtained for the

trajectory of Nov. 7, 1959,
The general character of incremental miss S as a function of A 5, A 6,

b, bV, ba , NS, or p, 8, ¢, V, a» B 18 shown in Figures 11, 15, 16,
17, 18, 19.
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It is evident from these curves that for small errors (impacts not too
close to the limb) S is a reasonably linear function of incremental errors.
As the impact point moves closer toward the Moon's limb the cuzves break
away from a linear variation. Values of errors for which the linear trend
ceases to be a good approximation depend orn a particular variable. This
situation is shown much more clearly in plots of error coefficients. Two
examples are given in Figures 12 and 13. The deviation from linearity can

be either gradual or rather sharply defined.

Since this value of the error coefficient is only of significance in those
cases where the curves of miss versus error are linear, the cases which

fail to meet this qualification are not presented graphically.

A feature which is common to all plots of S is their asymmetry with
respect to the nominal impact point. This is to be expected because the Moon
is a moving target. It should be sufficiently clear that the larger the arrival an
the greater the asymmetry in S with respect to the desired impact point. It
may be noted that in this investigation no attempt was made to achieve a nor-
mal impact. (Arrival angle is defined as the angle between the velocity vector
and the local vertical.)

From the plots of S as they stand the total permissible spread of errors
cannot be readily determined. By this we mean themaximum deviation in each
variable from the nominal value that results in a skimming hit at each limit.
This is accomplished best trom the plot of the '"distance of closest approach"
as a function of a particular error. This also alleviates the problem of com-
puting too many runs which fail to impact the moon. A typical example of
such plot is shown in Figure i4. The range of errors for other variables has
been estimated from similar plots given in Figures 20, 21, 22, 23. Similar

estimates were made for the November 15 and November 23 trajectories.
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The range of errors for the November 7 trajectory is as follows:

-14.5 < Ap<2l.2
- .21 <A B< .04
- .15 <A ¢< .87
-79.0 <AV < 101.0
- .202 < A q <.075

Valucs available for the November 15 case are
- .18 < Ap<22.0

.43 < Ag < .06
- .65< A p< .08

10.0 < AV < 82.0
- .03 < A q< .32

.025 < A B < .264

For the November trajectory, the available values are

1.9 < p< 55

- .067< H < 1.56

- 152 < ¢ < 274
- 9.9 <« V<124

- .28 < o < .41

- .35 < B < .002

Here Apis given in statute miles

AV in feet per second and

Aar, OB s O¢, A¢g in degrees
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list.

The initial conditions used in the three cases are given in the following

November 7

November 15

November 23

Xo -3.3000000 x 107° -3. 3000000 x 107° 3.3000000 x 107>
Yo -3.3000000 x 107> 3. 3000000 x}O-s 3.3000000 x 107"
28 4.0500000 x 10~° 4.0500000 x 10 ° 4.0500000 x 10”°
To 4,6844449 x 107> 4. 6844449 x 107° 4, 6844449 x 107°
Xo 7.9198756 x107° 5. 8280834 x 107> -1.2900149 x 107%
Yo _2.6305573 x 10° 2.6288784 x 107~ 2.4008342 x 107 °
Zq 4.3421102 x 107° 6.9638123 x 107° 5.5450141 x 107>
v 2.7812974 x 10™ % 2.7812971 x 1074 2.7812971 x 1074
& 225° 135° 45°

2 4%571 357 4%571 35m 4%571 350

a -8°.982 14°.5 11°.5

g 286°. 76 77°.5 118°. 25

Comparison of these three cases indicates that the geometrical arrange-

ment of the three main bodies has a significant effect not only on the error

range itself, but also on the error asymmetry.
in A@ and A¢

Also the range in velocity became significantly smaller.

make the hit impractical for conditions specified above.

vehicle.

and 29.

For instance, the tclerance

in the November 15 case is very tight in the positive direction.

In none of the cases, however, do the tolerances become so small as to

It is of interest to consider thereffect of errors on the flight time of the

A few representative plots are shown in Figures 25, 26, 27, 28

It is evident from these that the variation in flight time is nearly

3 . . - 4 . . .
linear with the magnitude of p and v. The variation with angles, however,

is sharply non-linear.

It may also be noted that so far as the November 7

trajectory is concerned, errors A4, A¢, and AaAp affect the flight time in
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opposite directions. Thus negative A6, A ¢ tend to increase the time of
flight while negative Aa , A Stend to decrease it. As was to be expected V

has the most serious effect on the flight time.

The entire previous discussion was concerned with errors in only one of
the initial quanfities: When errorsin p, 8, ¢, v, o, 8 are present simul-
taneously, the increment in miss is found by (34) provided that precision
measures Acri are known. This expression will, however, result in.an
estimate that is generally too high. If the errors /_\.ai are entirely inde-
pendent, it is more reasonable to compute the miss from

(45)

2 r 2 72 2r 2 2 1/2
M= | o] o 2Boas| o] a4 22 av| 4 = ‘| 25 ng
% 36 3¢ oV va || og

Conversely, if the miss is not to exceed some predetermined value,

>

equation (45) can be used to specify the value of Aai. In the converse prob-
lem a question arises whether the effects of various parameters are equal or
not. This question car be settled by examining the plots of S. In general,
however, the precision with which the parameters must be measured can be

estimated from

(46)
1
oM S 2S 3S 3S 39S 35S
+ = ~—Ap D, — A6 =n —A=n-—-AV=n Ao = Do—— AR,
- 6 P - 1l 3¢ Za¢¢ 3 v 43, ° 53ﬁ'6

where n, are measures of the strength of the effect. Thus, as indicated
. . ; . 1
above, Ag¢ 2ffccts S n, times as much as Ap, etc. The quantity A M is
1

the relative tolerance on A M.

Perhaps, if further study was to be carried out, another approach to the
"total miss' portion of the error analysis could be tried. By varying the six
spherical parameters separately, within the impact region, an error tube

would be generated which would encompass the total allowable error. For
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these trajectories, statistically speaking, the first moment, or mean error
trajectory, could be computed. Using the mean as a measure of location, the
second moment can be taken about it to obtain the variance, the square root

of this quantity being the standard deviation. The standard deviation is merely
a number, in the same units as the particular parameter in question, which
mecasures the relative extent of the data concentrated about the mean and be-
comes larger as the data becomes more disper{sed. With a large sample, an
interval of two standard deviations will include about 95% of the trajectories.
With this knowledge, the confidence limits on the allowable error can be com-

puted.

However, it can be said without reservation that when the first moment
of the error cone is computed it would not agree with the computed standard
‘trajectory unless the arrival angle of the trajecto;y were normal. Immedi-
ately a problem becomes evident. By looking at Figure 30, a plot of longi-
tude and latitude of the impact points, the aliowable error is seen to be
almost no better than the nominal trajectory itself for changes in the velocity
angle A o« . The implications of this become clear when it is realized that if
a2 mean trajectory were to be computed from the data taken about a non-
normally arriving nominal, the allowable error at the extremes would be
fictitious, Under the same conditions, the tolerances probably would become

so smali that arrival at a predetermined point on the moon's surface would

be impossible.

in iignt of the above discussion, certain desirable procedures can be
ascertained which would be of value in predicting the likelihood of impact

and the accuracy of impact about a desired point of the Moon based on the

perturbations on the initial input.
Computing the impact points in terms of their latitude and longitude on

the apparent disc gives not only an indication of the value of an error tube and

the resulting measures of standard deviation, but also provides directional
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information as well as a measure of the miss distance. This information
would lead to optimization of computer runs on a factual rather than guess-
work basis. It is also concluded that the accuracy of prediction within pre-
scribed confidence limits is a direct function of the impact angle. In the
November 7 trajectory, this angle was computed at 500, for November 15,
.660, and for November 23, 65° These angles are calculated by finding the
direction cosines of a straight line approximation to the tangent line to the
hyperbola at the point of impact. The direction cosines of the normal to the
tangent plane are then computed. The products of the direction cosines are

summed and this gives the cosine of the angle of impact.

This portion of the report shall be concluded with a brief discussion con-
cerning the disturbing effects of the Sun on a vehicle moving in the Earth-

Moon space.

For two of the three dates used in this study the computation of the stand-

ard trajectory was repeated with the Sun taken out of the program.

For a crude estimate it is sufficient to compare the distance of the ve-

hicle from the Moon for equal flight times,

For the November 7 case, the distances differ by 5.3 miles after 20. 250
hours (just before impact) while for the November 23 case, the difference is
4. 8 miles at 20. 969 hours, which is also just prior to imp: =t. Thus the Sun's
perturbation on the distance of the vehicle from the Moon is not a very sig-

nificant one for the trajectories in question.

-85~



VI. LIFETIME OF AN ARTIFICAL LUNAR SATELLITE

The principal objective of this phase of the Lunar Trajectory Study was to
examine in a cursory way the life time of an artificial satellite placed in orbit

around the moon. No attempt at an all inclusive analysis of this problem was

intexided or made.

Using the '""n body computer program'' in a restricted four body analysis,
e.g., Earth, Moon, Sun and Vehicle; a near lunar orbit was run and some
g

interesting results were obtained.

Fixing the altitude of the injection point at 135. 827 st. miles above the
moons surface a range of instantaneous injection velocities were introduced.

The firstorbitofeach of the resulting orbits is shown in Figures 54 and 55. The range
between escape and impact has been covered. Taking the case V = 3,0 x 10-5

A.U. /Hour the run was extended for 25 davs. The projections of this orbit

for the first revolution are givenin Figures 56, 57, and 58, The osculating

orbital elements for this revolution are

(o]

i = 34°.36
e = 90°. 02
q = 4°.88
-5
a = 1.458x 10 " A.U.
e = ,1933
T = 14157
p ~ 275

and a plot of the apolune, perilune distances as a function of orbital life time
are given in Figures 59A and 59B. As may be seen in Figures 59A and 59B
several interesting features appear. First we see that the lifetime of the orbit

is a strong function of the number of major bodies carried in the computations.
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In the Earth, Moon, Sunfield the orbit exceeds 25 days (the limit has not been
determined). But for the Earth, Moorn field with the Solar effect removed, the
lifetime is reduced to 220 hours, impact with the Moon terminating the run,
A similar situation exists when the Earth's influence is removed with the

lifetime reduced to only a few hours.

Secondly there exists a definite pattern showing both the effects of long
and short period perturbations. The variation in the osculating orbital elements
was derived frem the rectangular components of the vehicles position and
velocity at six hour intervals for the first 10 days of the orbit. This was done
for both the Earth, Moon, Sun and Earth, Moongeometries with the results
indicated in Figures 60, 61 and 62 . These figures clearly show the rotation
of the line of apsides as well as the long period efiects in i and ). Also to be
noted is the definite divergence between the two cases. The length of time of
these runs precludes any cbvious identification of secular terms except in
T. Care should,however, be¢ exerciszd here as a long period term can over a
short interval of time look iike 2 secular tern. To show the true periodic
variation in a, e, and w requires that these elements be recomputed for
time intervals of the 6rder of one hour instead of the six hour interval employed

in these figures.

If a lunar satellite is to be employed to determine the geometrical figure
and intcrnal density gradient of the Moon by perturbation analysis of the
satellite's orbits, several factors are obvious. From Figure 59B we can see
that the difference in perilunes during the mid portion of the orbit is 1. 207x10“_8
A.U. or some 1. 12statute miles. Similarly, for the apolunes we have a
difference not exceeding 1. 961x10-8 A.U. or 1. 82 miles. Since this is as close
an orbit as one cares to discuss, first perilune is 1. 697.‘410"7 A.U. or 15.76
statute miles above the lunar surface, the perturbations shown are about the

maximum that can be expected. Hence any tracking equipment must be able

to resolve these perturbations with a high degree of accuracy. If this can be
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done then an appropriate set of orbital elements can be computed for a known
interval of time. Then a variation of parameters scheme can be introduced.

As an example consider the planetary equations due to Lagrange in which we

have
. 1 9R
Q= 3
2 . 5
naz (l—ez) 1/ sin i
1 3R tan % 3P IR
D O c 12 | e 3
A L €
na2 (l-ez) sin i CRY na {l-e.) 7
tan _;é_ IR (1.e2) 12 3R
;7= T+
i 2 3
paz (l-ez\ e 2 g ¢
2 R
9 =
na 9«
17 2 1:._
1-{1-2)2 3R (1e2) V2 4p
y 2 1/2
e=- (1-7) > = >
na e Q€ na e o m
2
tan i /2 9 R o 1—(1-e)1/2 3 2 3R
0 1/2
c = + (l-e) -
i 2
naZ (1_82)1/2 91 na e de na 3JA
whereoc= - nT, 7= @ + (} and €= 7+ 0 and the other elements have the

conventional meaning. The perturbing forces are contained in the disturbing

function R.
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If the left hand side of the above functions are known irom,the tracking
data it is possible to compare these with values obtained from computations
based on an assumed theoretical model. Comparisons can be made and in
theory at least an improved theoretical model obtained. While it may be
possible to arrive at a better figure for the moon in this way the likelihood
of determining the density gradieni is somewhat more uncertain since the

force field is not a uniquely determined function of the density gradient.
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VII. LUNAR CIRCUMNAVIGATION AND EARTH RETURN

In addition to the Lunik III trajectory* another Lunar Circumnavigation
and Earth Return trajectory was analyzed from an entirely different point of
view. In the Lunik III case we are primarily interested in the ability to re-
produce the trajectory of the vehicle in Earth-Moon space from crude tracking
data. In the case under present consideration we are concerned with the
generation of such a trajectory subject to a number of additional constraints.
These constraints are manifest in two ways, those associated with the ascent
and those associated with the extraterrestial portions of the flight. In the
former such practical problems as booster capabilities, range safety limits,
and the launch on time problem are eminent. These must be matched to the

geometrical constraints imposed by the extraterrestial portions of the flight.

An attempt has been made in this section to indicate the effects of these
constraints on a Lunar Circumnavigation and Earth Return trajectory with
particular emphasis or. matching the ascent to the geometrical constraints.

Consider the following as an initial set of constraints;

A. ASCENT TRAJECTORY

1. Launch Site: Cape Canaveral

2. Range Safety Limits: 85° - 125° in azimuth

3. Firing Azimuth Limits (Azimuth of the velocity vector at injection
or burnout point) identical with range safety limits.

4. Flight path angle at injection limited to 00_<_ 6 < 3° (a booster

characteristic)

B. CONDITIONS AT THE MOON

1. Distance of closest approach to Moon's surface 2000 < M < 3000

miles

*Described in Scientific Report #1
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Vehicle to pass in front of moon on outbound leg and slightly below
Moon's orbital plane. (Necessary to achieve Earth return in

Northern Hemisphere)

Transit Time = 3?125 for outbound leg (enabling vehicle to be in

vicinity of Moon for longest possible time)

C. EARTH RETURN

1.

Vehicle to return to the Earth in the Northern hemisphere and in a

suitable recovery area.

Vehicle to return to the Earth in direction of the Earth's rotation

{direct motion)

Vehicle to return at an altitude of from 200 < h < 300 miles above

the Earth's surface.

In arbitrarily specitying a set of constraints such as that listed above it

is possible to overdefine the problem. A solution may not exist for a particular

firing date. An indication of this exists in this case but an exhaustive study to

definitely ascertain whether such a situation is the case or not has not been

made.

To match the ascent and geometrical constraints it is first necessary to

determine the orientation of the velocity vector at the time of injection. Thus.

we must specify the time (t), the firing azimuth (AZ) and the flight path angle (6)

at the injection point. Since we have already placed a constraint on 6 our

free parameters become t and A,. Initially then we wish to select values

of t and A, such that the orbital plane of our vehicle intersects the orbital

plane of the moon some 3?125 after injection.

To obtain preliminary values for A, and t a method based on a two body

approximation was tried. It was realized at the outset that the final values
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for AZ and t could only be obtained from the n-body program by trial and
error since a solution to the two point boundary value problem in n-body
space does not exist in explicit form. However, it was hoped that the pre-
liminary values would be sufficiently close to the final values for AZ and t
to greatly reduce the convergence time. It is appropriate to mention at this
point that we have selected 2 direct assent trajectory, fully realizing that
for extreme declinations of the Mcon one may be forced to employ a coasting

orbit.

The results of such an approximation give AZ as a function of t, launching
site latitude (¢) and the coordinates of the Moon. For any specific case ¢ and
the coordinates of the Moon enter as fixed parameters. For this problem
we have taken the time as September 25, 1960,and the Moon's coordinates at
the vehicles time of arrival (3?‘25 later) as

187 37™ 275

" (

% ¢

_18°19' 51.5

where , is the right ascension and & , is the declination of the Moon,
.{ \

The injection point was taken as 1500 miles downrange at an azimuth

value of 110° and altitude of 750000 ft over a spherical Earth.

A convenient relation between the firing azimuth and the launching time,

can be obtained as follows:

Let (ix, i, iz) be unit vectors defining a geccentric equatorial coordinate
}7

System and ( .f—, Z, 7 ) be a horizon-altitude system connected with the injection

point. Then a unit vector f along the firing azimuth is given by

P = ZcosA + 7nsin A .
z z
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Rotation into the (ix, iv, iz) System gives

¢

- {cos AZ Sin ¢ cos a

+ sin A sin i
L z aL) b4

+

sin A cos a, - cos A sin. sin i
( z L z % aL)

+ {cos ¢ ces A )i
z' 2z

i

Unit vector normal to the plane of theorbitis given by W =1 x [

where T is the unit vector defining the launching site.

From a dot product of W 2nd a unit vector defining the Moon's direction

at the encounter we obtain

sin (o, - cg)

tan A =
= i oL - )- tan & cf
sin ¢ [cos ( L~ Gg)-ta qctg¢x]
where @, = Lauching site right ascension
ac = right ascension of the Moon
8¢ = declination of the Moon
¢ = launch site latitude

Since the n-body program employed in this search requires initial
velocity components to be expressed in the geocentric equatorial system

it was convenient to employ the following expressions:

x =V i g - i i i
x sin 0 cod ¢ cos a; - cos 0 (cosAzs1n¢cos aL+ s1nAzs1n aL)]

-

-

3.r=V sin 6 cos ¢ sin a

+ cos 6 (sin Az cosa; - COS Az sin ¢ sin aL)]

2=V, [sin f0sin¢ + cos §cos ¢ cos Az]

-93.




where 8 is the flight path angle, VT is the total injection velocity,

and ¢ is the latitude of the injection place.

Choosing now the launching site, injection point, lunar coordinates, and
the trip time as specified earlier, we can plot the firing azimuth as a function
of time on September 25, 1960. This plot is shown in Figure 63. (Only
Eastward firings have been considered.) Note that the range in firing azimuth
is quite restricted. There are two reasons for this.© First of all firing on
steep branches is impractical because any launching delays will require ex-
cessive re-adjustiment of azimuth. Secondly most of the diagram lies out-

side the range safety limits of 85° to 125°.

From this point the procedure was rather straight forward. Three
variables remained open to us. These were launching right ascension ¢ L’
total velocity VT, and the flight path angle 9. Trip time can hardly be ’

considered a bonafide parameter.

The total velocity was fixed at a value which was found reasonable from

. o .o o) ) . .
previous studies. Then for values of 6= 1, 2, 3 launching time was varied

over the upper allowable part of the AZ - t. diagram. This is the region

L :
where the firing azimuth varies relatively slowly with launching time.

T! Iting initial condition: : A TR mployed
1e resulting initial conditions x .y , z_, x . y_, z were employe
in the nebody program. The bodies used were the Sun, Earth, Moon, and
the vehicle. Note carefully that the Earth's oblateness was retained inthe n-body
program. Also, the initial conditions as used are based on a two body,

approximation {no oblateness considered),

The very first runs indicated two problem areas. The first of these is
that for the small range in 6 one cannot use an arbitrary combination of

diagram must include a grid of

Az’ tL. In fact it appears that Az’ t

L
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constant ¢ lines to be really useful. The situation as it exists shows that we
are firing almost at right angles to the initial radius vector. The line of
apéides of the resulting orbit turns almost 90° away from the intended point
of encounter., One can compensate for this effect by a large flight path angle.
Yet in our case this variable is restricted to a narrow range. Thus the only
way to correct this problem is to employ smaller values of a . In our case
this forced us to employ a value for Az = 85° which is practically the limit

of the-allowable range.

The second problem is the fact that first runs placed the vehicle far
below the moon. Part of the rotation of the line of apsides described above,
and the great dip of the trajectory below the Moon's orbital plane can be

attributed to the effect of Earth oblateness.

To make the z compoenent of the veliicle in the Moon's vicinity acceptable
at all, it was found necessary to aim at a declination much different from
that of the actual Moon. In our case the final value was in the neighborhood

- 59 . o 2 gng
of -8 degrees as compared to -18 for the actual position of the target.

This experience indicates that the two body estimates of the launching
corditions have an extremely limited value and should be modified. Since
the declination of the target point must be watched so closely, this quantity

became in our case an additional variable,

Our approach indicated finally that a reasonable circumnavigating
trajectory results for the following conditions:

o
Z = 279 22' 12"
Cr 9

) = 7% 0
) .(IT 740 »
. VT = '2.6200445 x 10 ~ AU/hr
. 50
: o
5 = 19° 131 22"
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a, = 124%00

Transit time to the Moon approximately 75 to 85 hours

and the total trip time between 7.5 to 8 days.

limited error analysié of this trajectory was made over the following
range of input parameters:

123%4 < Al < 124200

-8%191520 <« 5 < -7°19' 521

T
-4 -4
2.6200226x 107" < V_ < 2.6200666% 10
1° < 0 < 23°

One of these trajectories is shown in Figures 64, 65 and 66.

The resulting variation of distances of closest approach to the Moon and

on return to the Earth are shown in Figures 67, 68, 69 and 70.

M E
the vicinity of -7040', However, these minimum values do not satify the

It can be seen that r. . and r_ as functions of 6 ¢_reach a minimum in

original specification. Although the closest approach to the Moon is

satisfactory and meets requirements, the value of r_ is entirely too large.

B
¢ ©an no longer be used to improve either distance.
T

At any rate ¢

The variation of these two distances with 6 exhibits a similar trend.
Thus o reaches a certain minimum which is contrary to specifications from
the start. Not much improvement can be hoped for using this variable.

The next variable, the velocity V causes changes in r_ and r_ _in

T’ E M
opposite directions. The point of intersection does not satisfy specifications.

A limited hope of improving these two distances lies in the fact that slopes

6.



of the two functiocns are quite different. Thus at the cost of a slight degrada-
tion of one distance, one may obtain a very substantial improvement in the

other. No attempt was made o investigate this possibility.

Sensitivity of r Eand T to changes in the right ascension of the launching
point a, are shown in Figure 70. Its nature is exactly the same as that

of the previous plot.

It appears then that for this trajectory we have reached near optimum
conditions. Despite this fact the distance of closest approach on return to
the Earth is entirely unsatisfactory. It must be noted that the above discussion
ignored the question of transfer of angular momentum during scattering of the
vehicle by the Moon. As pointed out by Egorov and Sedov in their papers, this
is a parameter which is quite important in determining characteristics of the
return leg of the trajectory. In fact specification B.2 is a direct consequence

of this consideration.

Results of this study can be summarized as follows:

1. Initial conditions established on the basis of a two body problem
were found highly unsatisfactory when used in a more realistic model
of the Earth-Moon System. One of the causes appears to be the
Earth oblateness and the restricted range available for flight path

angles 0.

2. A '"figure 8'' trajectory was found which satisfies nearly all engineering

restrictions at launch.
The distance of closest approach at the Moon is satisfactory.

The distance of closest approach to the Earth is unsatisfactory, being
in the neighborhood of 10000 miles and occasionally even higher than
this value. The return, however, does occur i1 the northern hemi-

sphere in direct motion. The problem of proper recovery site was:.
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4,

not studied for obvious reasons.

The trip time achieved is satisfactory.

The limited error analysis indicates that the above trajectory
is nearly optimura as far as the distances of closest approach are

concerned. Thus,little hope exists for any further improvement.

It must be remarked that the above was a direct ascent trajectory.
It is conceivable that employment of a coasting arc before final
injection will result in better circumnavigation as well as recovery
distances. Without question, ithe coasting arc will largely eliminate

constraints associated with the launch on time problem and facilitate

solution of the geometrical problera.

With regard to trajectories of this type Figure 71 shows the differences
between considering a two body plus oblateness, three body, a four
body, and a four body plus oblatness effect on close approaches to

the Moon. Since the latter three cannot be handled analytically the

only hope of gettinig a reasonable approximation for Az. as a function

of t rests in modifying the two body metﬁod as outlined by an oblatness

term. No attempt was made to do this on this contract.
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VIII. EPHEMERIS COMPUTATION - PALLAS AND VESTA

One of the tasks which the n-body interplanetary trajectory computer
program is capable of performing is the comgpilation of ephemerides. To test
this facet of the program, it was decided to reproduce part of the orbit for
two of the better observed asteroids the coordinates of which are tabulated in
the American Ephemeris and Nautical Almanac. Observational inaccuracies
in the ephemerides of artificial earth satellites together with atmospheric
drag effects pracluded their use. Furthermore, they would only serve as a
check cn the near earth accuracy ol the program, the perturbative forces of

the planets being of little or no consequence.

The ephemerides for Pallas and Vesta, as given in the almanac, are
tabulated for each day and represent smoothed values for which the integra-
ticns were adjusted along the entire orbit. A discussion of the methods em-
ployed, intervals selected, etc. can be found in Vol. XI, Part IV of the Astro-
nomical Papers. The smoothing technique employed greatly improves the
accuracy of the ephemeris. Individual errors in the order of 5 seconds of
arc between the computed and chsexved values of right ascension and declina-
tion is indicative cof the accuracy of the observational data for which the
ephemerides are compiled. Hence, only six decimal places are printed out
in the Almanac. One unit in the last decimal place corresponding to 1x10-6A. U.

throughout.

Our purpose here is to select a small segment of observed data and to
predict the future positions of the body. This represents the case most use-
ful to artificial satellite ephemeris compilations in which the future position
of the body is of interest. This will be compared with runs obtained by se-
lecting data over a larger segment of the orbit indicating the improvement to
be expected. The latter will indicate the need for a time history (past hListory
of the satellite's position) of some extent if future position type ephemerides

are to be accurately obtained.
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For our computations we have used Pallas and Vesta in the combined
force field of the Sun, Venus, Earth, Mars, Jupiter and Saturn. Selected

data on these two asteroids is given in Table 1.

TABLE 1
Vol Sidereal
Radius © ur;xe Mass Period
(Km) (cm™} |{grams) (days) a {(A. U.) e i {degrees})
22 22 R
Pallas 240 6x10 20x10 1684 2.767 . 255 34.8
. .
Vesta 190 30}{1021 10x10 ) 1325 2.361 . 088 7.1

It should be noted that they represent both extremes with regard to orbital

eccentricity and inclination that is found among the brighter asteroids.

Selecting ten tabular geocentric positions from the almanac, a numerical
differentiation scheme was employed to obtain the velocity vector at one of
the tabular values and hence a complete set of initial conditions for the n-body
trajectory program was obtained. The data represented a period of time of
ten days. A run was made using these conditions. Then a linear differential
correction scheme for each component of the velocity vector was applied to
improve the original estimates of the velocity components. This was accom-
plished by employing the tabular position data at three day intervals but now
extended over a period of sixty days. A set of normal equations were
obtained the solution of which yielded the desired corrections. This entire
procedure was again repeated at three day intervals but with the period ex-
tended to one hundred and fifty days for Vesta, and with six day intervals

over one hundred and fifty days for Pallas.

The results of these computations are shown in Figure 72 for Pallas and
73 for Vesta. As may be seen, the ephemerides computed from the short

time history soon indicate large errors. While the residuals are small over
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the fitted portion of each orbit they soon build up to substantial errors further
along in time. We can conclude that in compiling ephemerides of this type a
long time history for the object under study is a prime requisite. This would
allow the entire orbit to be fitted at one time a procedure used in astronomy.
This does not necessarily mean that a great number of data points are re-
quired but rather that they be obtained at sclected intervals over the entire
orbit. Intervals in the order of 20 to 40 days are common in astronomical
practice. In the case of Pallas and Vesta, whose periods are 4.6 and 3.6
years respectively, the 20 day interval necessitates the use of some 84 and

66 points respectively.

An additional effect that can be noticed in Figures 72 and 73 is a slight
oscillation in the residuals. A satisfactory explanation of their cause has
not as yet been determined. Generally speaking, the amplitudes of the oscil-

lations are slightly less for Pallas than for Vesta,
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Figure 67. Distance of Closest Approach to the Moon and
Earth as a Function
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APPENDIX A

MODIFICATION OF THE LUNAR TRAJECTORY PROGRAM
TO N-BODY COMPUTER PROGRAM

This report pointed out earlier that the original Lunar Trajectory
Program had been extended to cover all major bodies of the Solar System
(n = 9). The resulting =quaations . motion differ in no way from those given
in"the Scientific ihepoit o, 1. Thus, the equation of motion of body m, with

respect to the body m, iz ‘iven by

v, N [ T -7 T
. ik ) — Tik T Tik ik 1
r, = -k (m, + m.} -——— Kk L -
ik k i’ 3 i 3 3
ik i= L i ik
J‘¢ i L]
i#Fk

-

The oblateness correction remains the same as in that Report. The change to
include a greater number of bodies does not affect either the method of
solution or the integration method employed. The heart of the extended

program - the planetary tables - was described in the Scientific Report No. 1.

The physical data appropriate for the added bodies are given in Table I

of this Appendix. It is to be noted that much of the data is included simply

for interest and is not used in computations.

The present Appendix also includes the operational procedure for the
'""n-body interplanetary trajectory program' as written for the IBM 7090
computer. The information contained in this procedure is that required by

an engineer and a machine operator to set up problems on t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>